Synlett 2012(7): 1079-1081  
DOI: 10.1055/s-0031-1290654
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

An Iodine-Promoted, Mild and Efficient Method for the Synthesis of Phenols from Arylboronic Acids

Ankur Gogoi, Utpal Bora*
Department of Chemistry, Dibrugarh University, Dibrugarh 786004, Assam, India
Fax: +91(373)2370323; e-Mail: utbora@yahoo.co.in;
Further Information

Publication History

Received 6 January 2012
Publication Date:
28 March 2012 (online)

Abstract

A mild and efficient methodology for the ipso-hydroxylation of arylboronic acids to phenols has been developed using aqueous hydrogen peroxide as oxidizing agent and molecular iodine as catalyst. The reactions were performed at room temperature in short reaction time under metal-, ligand- and base-free conditions.

    References and Notes

  • 1a Tyman JHP. Synthetic and Natural Phenols   Elsevier; New York: 1996. 
  • 1b Rappoport Z. The Chemistry of Phenols   Wiley-VCH; Weinheim: 2003. 
  • 2a Fyfe CA. In The Chemistry of the Hydroxyl Group   Vol. 1:  Patai S. Wiley Interscience; New York: 1971.  p.83-127  
  • 2b Hoarau C. Pettus TRR. Synlett  2003,  127 
  • 2c Hanson P. Jones JR. Taylor AB. Walton PH. Timms AW. J. Chem. Soc., Perkin Trans. 2  2002,  1135 
  • 2d George T. Mabon R. Sweeney G. Sweeney BJ. Tavassoli A. J. Chem. Soc., Perkin Trans. 1  2000,  2529 ; and reference cited therein
  • 2e Thakur KG. Sekar G. Chem. Commun.  2011,  47:  6692 
  • 2f Mehmood A. Leadbeater NE. Catal. Commun.  2010,  12:  64 
  • 3a Anderson KW. Ikawa T. Tundel RE. Buchwald SL. J. Am. Chem. Soc.  2006,  128:  10694 
  • 3b Schulz T. Torborg C. Schaffner B. Huang J. Zapf A. Kadyrov R. Borner A. Beller M. Angew. Chem. Int. Ed.  2009,  48:  918 
  • 3c Sergeev AG. Schulz T. Torborg C. Spannenberg A. Neumann H. Beller M. Angew. Chem. Int. Ed.  2009,  48:  7595 
  • 3d Willis MC. Angew. Chem. Int. Ed.  2007,  46:  3402 
  • 3e Kwong FY. Chen G. Chan ASC. Tetrahedron Lett.  2007,  48:  473 
  • 3f Gallon BJ. Kojima RW. Kaner RB. Diaconescu PL. Angew. Chem. Int. Ed.  2007,  46:  7251 
  • 4a Zhao D. Wu N. Zhang S. Xi P. Su X. Lan J. You J. Angew. Chem. Int. Ed.  2009,  48:  8729 
  • 4b Tlili A. Xia N. Monnier F. Taillefer M. Angew. Chem. Int. Ed.  2009,  48:  8725 
  • 5a Matteson DS. Tetrahedron  1989,  45:  1859 
  • 5b Pelter A. Smith K. Brown HC. Borane Reagents   Academic Press; New York: 1988. 
  • 6a Sakurai H. Tsunoyama H. Tsunoyama H. Tsukuda T. J. Organomet. Chem.  2007,  692:  368 
  • 6b Lam PYS. Bonne D. Vincent G. Clark CG. Combs AP. Tetrahedron Lett.  2003,  44:  1691 
  • 6c Jung YC. Mishra RK. Yoon CH. Jung KW. Org. Lett.  2003,  5:  2231 
  • 7 Xu J. Wang X. Shao C. Su D. Cheng G. Hu Y. Org. Lett.  2010,  12:  1964 
  • 8 Surya Prakash GK. Chacko S. Panja C. Thomas TE. Gurung L. Rasul G. Mathew T. Olah GA. Adv. Synth. Catal.  2009,  351:  1567 
  • 9 Kianmehr E. Yahyaee M. Tabatabai K. Tetrahedron Lett.  2007,  48:  2713 
  • 10 Webb KS. Levy D. Tetrahedron Lett.  1995,  36:  5117 
  • 11 Simon J. Salzbrunn S. Surya Prakash GK. Petasis NA. Olah GA. J. Org. Chem.  2001,  66:  633 
  • 12 Piera J. Backvall J.-E. Angew. Chem. Int. Ed.  2008,  47:  3506 
  • 13a Jereb M. Vrazic D. Zupan M. Tetrahedron  2011,  67:  1355 
  • 13b Das S. Borah R. Devi RR. Thakur AJ. Synlett  2008,  2741 
  • 15a Kuivila HG. J. Am. Chem. Soc.  1954,  76:  870 
  • 15b Kuivila HG. Armour AG. J. Am. Chem. Soc.  1957,  79:  5659 
  • 16 Filipan-Litvic M. Litvic M. Vinkovic V. Tetrahedron  2008,  64:  5649 
  • 17 Zaugg HE. Schaefer AD. J. Am. Chem. Soc.  1965,  87:  1857 
14

Hydroxylation of Arylboronic Acids; General Procedure: A 50 mL round-bottom flask was charged with arylboronic acid (1 mmol), 30% aqueous H2O2 (2 mL) and iodine (5 mol%) and the reaction mixture was stirred at room temperature. After completion of the reaction (TLC) the reaction mixture was diluted with water (20 mL) and extracted with diethyl ether (3 × 15 mL). The ether extract was washed with sodium thiosulfate solution (10 mL). The separated organic layer was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (eluting with ethyl acetate/hexane or diethyl ether/hexane) or by crystallization. All compounds were characterized by ¹H NMR, ¹³C NMR, FT-IR and MS and by comparison with authentic samples. Analytical data of phenol (2a): colorless solid; mp 41-42 ˚C (Lit.¹7 41-42 ˚C). ¹H NMR (CDCl3): δ = 7.25-7.19 (m, 2 H), 6.93-6.88 (m, 1 H), 6.81-6.78 (m, 2 H), 5.08 (s, 1 H); ¹³C NMR (CDCl3): δ = 153.0, 127.5 (2C), 120.0, 114.5 (2C)