Synlett 2012; 23(7): 1057-1063
DOI: 10.1055/s-0031-1290492
letter
© Georg Thieme Verlag Stuttgart · New York

Photoinduced Elimination in 2,3-Dihydro-2-tert-butyl-3-benzyl-4(1H)-­quinazolinone: Theoretical Calculations and Radical Trapping Using TEMPO Derivatives

Fanny Araceli Cabrera-Rivera
a   Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C. P. 62209 Cuernavaca, Morelos, México, Fax: +52(777)3297000   Email: jaime@ciq.uaem.mx
,
Claudia Ortíz-Nava
a   Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C. P. 62209 Cuernavaca, Morelos, México, Fax: +52(777)3297000   Email: jaime@ciq.uaem.mx
,
Jaime Escalante*
a   Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C. P. 62209 Cuernavaca, Morelos, México, Fax: +52(777)3297000   Email: jaime@ciq.uaem.mx
,
Julio M. Hernández-Pérez
b   Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur y Av. San Claudio, Col. San Manuel, 72530 Puebla, México
,
Minhhuy Hô
a   Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, C. P. 62209 Cuernavaca, Morelos, México, Fax: +52(777)3297000   Email: jaime@ciq.uaem.mx
› Author Affiliations
Further Information

Publication History

Received: 30 December 2011

Accepted after revision: 10 February 2012

Publication Date:
29 March 2012 (online)


Abstract

Photochemical irradiation of 2,3-dihydro-2-tert-butyl-3-benzyl-4(1H)-quinazolinone produced 3-benzyl-4(3H)-quinazo­linone through photoinduced elimination via a radical mechanism. The use of photochemical conditions such as chloroform and UV irradiation (λ = 254 nm) got the 3-benzyl-4(3H)-quinazolinone in a high yield. Some theoretical calculations were achieved to explain the mechanism and the presence of radical intermediates was confirmed by trapping with different 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) derivatives.

Supporting Information

 
  • References and Notes

  • 1 Mhaske SB, Argade NP. Tetrahedron 2006; 62: 9787
    • 2a Larksarp C, Alper H. J. Org. Chem. 2000; 65: 2773 ; and references cited therein
    • 2b Padala SR, Padi PR, Thipireddy V. Heterocycles 2003; 60: 183
    • 2c Maarouf AR, El-Bendary ER, Goda FE. Arch. Pharm. Pharm. Med. Chem. 2004; 337: 527
    • 2d Xu Z, Zhang Y, Fu H, Zhong H, Hong K, Zhu W. Bioorg. Med. Chem. Lett. 2011; 21: 4005
    • 3a Errede LA, Hill JR, McBrady JJ. J. Org. Chem. 1982; 47: 3829
    • 3b Connolly DJ, Cusack D, O’Sullivan TP. O, Guiry PJ. Tetrahedron 2005; 61: 10153
    • 3c Leol YC, Fettinger JC, Kurth MJ. J. Org. Chem. 2005; 70: 6941
    • 3d Acharyulu PV. R, Dubey PK, Prasada Reddy PV. V, Suresh T. ARKIVOC 2008; (xi): 104
    • 3e Hasegawa H, Muraoka M, Ohmori M, Matsui K, Kojima A. Bioorg. Med. Chem. 2005; 13: 3721
    • 4a Tangirala R, Antony S, Agama K, Pommier Y, Curran DP. Synlett 2005; 2843
    • 4b Bowman WR, Elsegood MR. J, Stein T, Weaver GW. Org. Biomol. Chem. 2007; 5: 103
  • 5 Andersin R, Mesilaakso M. J. Pharm. Biomed. Anal. 1995; 13: 667
  • 6 Nishio T, Kameyama S, Omote Y, Kashima C. Heterocycles 1990; 30: 493
  • 7 Kaneko C, Kasai K, Katagiri N, Chiba T. Chem. Pharm. Bull. 1986; 34: 3672
    • 8a Escalante J, Flores P, Priego JM. Heterocycles 2004; 63: 2019
    • 8b Priego J, Flores P, Ortiz-Nava C, Escalante J. Tetrahedron: Asymmetry 2004; 15: 3545
    • 8c Escalante J, Ortiz-Nava C, Flores P, Priego JM, García-Martínez C. Molecules 2007; 12: 173
    • 8d Coppola GM. Synthesis 1980; 505
  • 9 Spectral assignments were made with the help of extensive decouplings on authentic samples of the started material 2 and the product 3
    • 10a Keana JF. W. Chem. Rev. 1978; 78: 37
    • 10b Vogler T, Studer A. Synthesis 2008; 1979 ; and references cited therein
    • 10c Barriga S. Synlett 2001; 563
    • 10d Naik N, Braslau R. Tetrahedron 1998; 54: 667
    • 10e Calderón F. Synlett 2006; 657
  • 11 Schoening KU, Fisher W, Hauck S, Dichtl A, Kuepfert M. J. Org. Chem. 2009; 74: 1567
    • 12a Villamena FA, Xia S, Merle JK, Lauricella R, Tuccio B, Hadad CM, Zweier JL. J. Am. Chem. Soc. 2007; 129: 8177
    • 12b Pou S, Halpern HJ, Tsain P, Rosen GM. Acc. Chem. Res. 1999; 32: 155
    • 12c Villamena FA, Hadad CM, Zweier JL. J. Am. Chem. Soc. 2004; 126: 1816
  • 13 Frisch MJ, Trucks GW, Head-Gordon M, Gill PM. W, Wong MW, Foresman JB, Johnson BG, Schlegel HB, Robb MA, Repogle ES, Gomperts R, Andres JL, Raghavachari K, Binkley JS, Gonzalez C, Martin RL, Fox DJ, DeFrees DJ, Baker J, Stewart JJ. P, Pople JA. GAUSSIAN 98. Gaussian Inc; Pittsburgh, PA: 1998
    • 14a Nyden MR, Petersson GA. J. Chem. Phys. 1981; 75: 1843
    • 14b Petersson GA, Al-Laham MA. J. Chem. Phys. 1991; 94: 6081
    • 14c Petersson GA, Tensfeldt T, Montgomery JA. J. Chem. Phys. 1991; 94: 6091
    • 14d Montgomery JA, Ochterski JW, Peterson GA. J. Chem. Phys. 1994; 101: 5900
    • 15a Ochterski JW, Petersson GA, Montgomery JA, Pople JA. J. Chem. Phys. 1996; 104: 2598
    • 15b Curtiss LA, Raghavachari K, Redfern PC, Stefanov BB. J. Chem. Phys. 1998; 108: 692
  • 16 Bader RF. W. Atoms in Molecules: A Quantum Theory. Oxford University Press; Oxford: 1990
  • 17 PROAIM, obtained from R. F. W. Bader, Department of Chemistry, McMaster University, Hamilton, Ontario, Canada
  • 18 Pryor WA, Tang FY, Tang RH, Church DF. J. Am. Chem. Soc. 1982; 104: 2885
  • 19 Zierhut M, Roth W, Fischer I. J. Phys. Chem. A. 2004; 108: 8125
  • 20 Washida N, Bayes KD. J. Phys. Chem. 1980; 84: 1309
  • 21 Typical Procedure A solution of 2 (0.34 mmol) in CHCl3 was stirred and irradiated with UV light in the Rayonet equipment RPR-100. The reaction mixture was monitored by TLC (hexane–EtOAc = 80:20) until the disappearance of the starting material. The reaction mixture was concentrated under reduced pressure, and the crude of the reaction was purified by flash chromatography. When the reaction was examined by 1H NMR at 400 MHz, peak ratios were determined by integration of the spectrum with an estimated error of ca. 5%