Synlett 2012; 23(15): 2237-2240
DOI: 10.1055/s-0031-1290452
letter
© Georg Thieme Verlag Stuttgart · New York

Low-Temperature Synthesis of Pyrano- and Furo[3,2-c]quinolines via Povarov Reaction Using a Highly Ordered 3D Nanoporous Catalyst with a High Acidity

S. Chauhan
a   National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
,
G. P. Mane
a   National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
,
C. Anand
a   National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
,
D. S. Dhawale
a   National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
,
B. V. Subba Reddy
a   National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
b   NIMS-IICT Materials Research Center, Indian Institute of Chemical Technology, Hyderabad 500 007, India
,
S. M. J. Zaidi
c   Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran-31261, Saudi Arabia
,
Salem S. Al-Deyab
d   Department of Chemistry, Petrochemicals Research Chair, Faculty of Science, King Saud University, P.O. Box 2455 Riyadh 11451, Saudi Arabia
,
V. V. Balasubramanian
a   National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
,
T. Mori
a   National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
b   NIMS-IICT Materials Research Center, Indian Institute of Chemical Technology, Hyderabad 500 007, India
,
A. Vinu*
a   National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
b   NIMS-IICT Materials Research Center, Indian Institute of Chemical Technology, Hyderabad 500 007, India
e   Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia, Email: a.vinu@uq.edu.au
› Author Affiliations
Further Information

Publication History

Received: 23 May 2012

Accepted after revision: 25 June 2012

Publication Date:
27 August 2012 (online)


Abstract

The imines generated in situ from aryl amines and cyclic enol ethers undergo smooth [4+2] cycloaddition with 3,4-dihydro-2H-pyran (DHP) and 2,3-dihydrofuran (DHF) using the Brønsted acid sites on the aluminosilicate wall structure of the nanoporous catalyst under mild reaction conditions to afford the corresponding pyrano- and furo[3,2-c]quinolines, respectively, in good yields with high diastereoselectivity. The high activity of the catalyst is due to its high surface area, large pore volume, and well-ordered porous structure with high acidity. In addition, the catalyst was found to be highly stable and can be reused several times without affecting the activity of the catalyst.

 
  • References and Notes

    • 1a Povarov LS. Russ. Chem. Rev. 1967; 36: 656
    • 1b Kouznetsov VV. Tetrahedron 2009; 65: 2721
    • 1c Boger DL, Weinreb SM. Hetero Diels–Alder Methodology in Organic Synthesis . Academic Press; San Diego: 1987
    • 2a Ramesh M, Moham PS, Shanmugam P. Tetrahedron 1984; 40: 4041
    • 2b Perry NB, Blunt JW, McCombs JD, Munro MH. G. J. Org. Chem. 1986; 51: 5476
    • 2c Williamson NM, March DR, Ward AD. Tetrahedron Lett. 1995; 36: 7721
    • 2d Johnson JV, Rauckman BS, Baccanari DP, Roth B. J. Med. Chem. 1989; 32: 1942
    • 2e Carling RW, Leeson PD, Moseley AM, Baker R, Foster AC, Grimwood S, Kemp JA, Marshall GR. J. Med. Chem. 1992; 35: 1942
    • 2f Carling RW, Leeson PD, Moseley AM, Smith JD, Saywell K, Tricklebank MD, Kemp JA, Marshall GR, Foster AC, Grimwood S. Bioorg. Med. Chem. Lett. 1993; 3: 65
    • 3a Grieco PA, Bahsas A. Tetrahedron Lett. 1988; 29: 5855
    • 3b Babu G, Perumal PT. Tetrahedron Lett. 1998; 39: 3225
    • 3c Hadden M, Stevenson PJ. Tetrahedron Lett. 1999; 40: 1215
    • 3d Yadav JS, Reddy BV. S, Srinivas R, Madhuri C, Ramalingam T. Synlett 2001; 240
    • 4a Crousse B, Begue J.-P, Bonnet-Delpon D. J. Org. Chem. 2000; 65: 5009
    • 4b Lucchini V, Prato M, Scorrano G, Stivanello M, Valle G. J. Chem. Soc., Perkin Trans. 2 1992; 259
    • 4c Kametani T, Furuyama H, Fukuoka Y, Takeda H, Suzuki Y, Honda T. J. Heterocycl. Chem. 1986; 23: 185
    • 4d Babu G, Perumal PT. Tetrahedron Lett. 1997; 38: 5025
    • 4e Jin G, Zhao J, Han J, Zhu S, Zhang J. Tetrahedron 2010; 66: 913
    • 5a Makioka Y, Shindo T, Taniguchi Y, Takaki K, Fujiwara Y. Synthesis 1995; 801
    • 5b Kobayashi S, Ishitani H, Nagayama S. Synthesis 1995; 1195
    • 5c Kobayashi S, Nagayama S. J. Am. Chem. Soc. 1996; 118: 8977
    • 5d Ma Y, Qian C, Xie M, Sun J. J. Org. Chem. 1999; 64: 6462
    • 5e Batey RA, Powell DA. Chem. Commun. 2001; 2362
    • 5f Powell DA, Batey RA. Tetrahedron Lett. 2003; 44: 7569
    • 5g Legros J, Crousse B, Ourevitch M, Bonnet-Delpon D. Synlett 2006; 1899
    • 5h Lavilla R, Bernadeu MC, Carranco I, Díaz JL. Org. Lett. 2003; 5: 717
    • 6a Zhang J, Li C.-J. J. Org. Chem. 2002; 67: 3969
    • 6b Li Z, Zhang J, Li C.-J. Tetrahedron Lett. 2003; 44: 153
    • 6c Chen L, Li Z, Li CJ. Synlett 2003; 732
    • 6d Chen L, Li C.-J. Green Chem. 2003; 5: 627
    • 6e Yadav JS, Reddy BV. S, Sadasiv K, Reddy PS. R. Tetrahedron Lett. 2002; 43: 3853
    • 6f Lin X.-F, Cui S.-L, Wang Y.-G. Tetrahedron Lett. 2006; 47: 4509
    • 6g Batey RA, Powell DA, Acton A, Lough AJ. Tetrahedron Lett. 2001; 42: 7935
    • 6h Yadav JS, Reddy BV. S, Rao RS, Kumar SK, Kunwar AC. Tetrahedron 2002; 58: 7891
    • 6i Yadav JS, Reddy BV. S, Gayathri KU, Prasad AR. Synthesis 2002; 2537
    • 6j Kamal A, Prasad BR, Ramana AV, Babu AH, Reddy KS. Tetrahedron Lett. 2004; 45: 3507
    • 6k Xia M, Lu Y.-d. Synlett 2005; 2357
    • 7a Vinu A, Murugesan V, Böhlmann W, Hartmann M. J. Phys. Chem. B 2004; 108: 11496
    • 7b Vinu A, Sawant DP, Ariga K, Hossain KZ, Halligudi SB, Hartmann M, Nomura M. Chem. Mater. 2005; 17: 5339
    • 7c Vinu A, Devassy BM, Halligudi SB, Böhlmann W, Hartmann M. Appl. Catal. A 2005; 281: 207
    • 7d Vinu A, Usha Nandhini K, Murugesan V, Böhlmann W, Umamaheswari V, Pöppl A, Hartmann M. Appl. Catal. A 2004; 265: 1
    • 7e Sakthivel A, Saritha N, Selvam P. Catal. Lett. 2001; 72: 225
    • 7f Hartmann M, Vinu A, Elangovan SP, Murugesan V, Böhlmann W. Chem. Commun. 2002; 1238
    • 8a Chakravarti R, Kalita P, Selvan ST, Oveisi H, Balasubramanian VV, Kantam ML, Vinu A. Green Chem. 2010; 12: 49
    • 8b Shobha D, Chari MA, Mano A, Selvan ST, Mukkanti K, Vinu A. Tetrahedron 2009; 65: 10608
    • 8c Vinu A, Kalita P, Balasubramanian VV, Oveisi H, Selvan ST, Mano A, Chari MA, Reddy BV. S. Tetrahedron Lett. 2009; 50: 7132
    • 8d Chari MA, Karthikeyan G, Pandurangan A, Naidu TS, Sathyaseelan B, Zaidi SM. J, Vinu A. Tetrahedron Lett. 2010; 51: 2629
  • 9 Experimental Procedure A mixture of the aryl amine (1 mmol), dihydrofuran (2b) or dihydro-2H-pyran (2a) (2.2 mmol), and AlKIT-5 (50 mg) in MeCN (5 mL) was stirred at ambient temperature for the appropriate time (Table 1). After completion of the reaction as indicated by TLC, the mixture was filtered and washed with EtOAc (2 × 10 mL). The combined organic layers were concentrated in vacuo, and the resulting product was purified by column chromatography on silica gel (Merck, 100–200 mesh, EtOAc–hexane = 2:8) to afford pure product 3e. Analytical Data Table 1, entry 5: 1H NMR (300 MHz, CDCl3): δ = 1.43–1.54 (m, 6 H), 1.56–1.64 (m, 4 H), 2.03 (dddd, 1 H, J = 2.3, 5.6, 4.0, 12.3 Hz), 2.24 (s, 3 H), 2.56 (m, 1 H, NH), 3.27–3.34 (m, 1 H), 3.40 (m, 1 H), 3.57 (t, 1 H, J = 4.0 Hz), 3.64 (t, 2 H, J = 6.1 Hz), 5.02 (d, 1 H, J = 5.6 Hz), 6.33 (d, 1 H, J = 8.3 Hz), 6.79 (dd, 1 H, J = 2.1, 8.3 Hz), 7.21 (d, 1 H, J = 2.1 Hz). IR (KBr): ν = 3390, 2935, 1601, 2860, 1571, 1525, 1463, 1340, 1211, 1081, 805, 757 cm–1. MS (EI): m/z = 275 [M+], 202, 158, 144, 105, 91, 57. Table 1, entry 6: 1H NMR (300 MHz, CDCl3): δ = 1.60–1.73 (m, 4 H), 1.79–1.93 (m, 1 H), 1.96–2.14 (m, 1 H), 2.23 (s, 3 H), 2.53–2.67 (m, 1 H), 3.39–3.44 (m, 1 H), 3.71 (t, 2 H, J = 5.4 Hz), 3.79 (dd, 2 H, J = 3.1, 8.0 Hz), 5.06 (d, 1 H, J = 8.0 Hz), 6.42 (d, 1 H, J = 8.2 Hz), 6.80 (dd, 1 H, J = 2.1, 8.2 Hz), 7.20 (d, 1 H, J = 2.1 Hz). IR (KBr): ν = 3363, 2930, 2860, 1617, 1503, 1460, 1303, 1070, 810, 750 cm–1. MS (EI): m/z = 247 [M+], 194, 150, 136, 91.
  • 10 Synthesis of AlKIT-5 Catalyst with Different n Si/n Al Ratio The AlKIT-5 materials with different n Si/n Al ratios were synthesized using Pluronic F127 as the template in an acidic medium. In a typical synthesis, 5.0 g of F127 was dissolved in 3 g of HCl (35 wt%) and 240 g of distilled H2O. To this mixture, 24.0 g of TEOS and the required amount of the aluminium isopropoxide were added, and the resulting mixture was stirred for 24 h at 45 °C. Subsequently, the reaction mixture was heated for 24 h at 100 °C under static conditions for hydrothermal treatment. After hydro-thermal treatment, the final solid product was filtered off and then dried at 100 °C without washing and calcined at 540 °C for 10 h. The samples are denoted as AlKIT-5(x) where x denotes the n Si/n Al ratio in the final product. The molar gel composition of the reaction mixture was SiO2/Al2O3/F127/HCl/H2O = 1.0:0.041–0.071:0.0035: 0.25:116.6.