Subscribe to RSS
DOI: 10.1055/s-0031-1290353
Total Synthesis of (±)-3-Hydroxy-β-ionone through a Ring-Closing Enyne Metathesis
Publication History
Publication Date:
13 February 2012 (online)

Abstract
The total synthesis of (±)-3-hydroxy-β-ionone, a bisnorsesquiterpene having allelopathic activity, has been accomplished employing an enyne metathesis for the construction of the C1-C8 segment and two-carbon elongation via a nitrile oxide-alkene [3+2] cycloaddition as the key steps.
Key words
enyne metathesis - total synthesis - ionones - nitrile oxide - cycloaddition
- 1a 
             
            Fujimori T.Kasuga R.Noguchi M.Kaneko H. Agric. Biol. Chem. 1974, 38: 891Reference Ris Wihthout Link
- 1b 
             
            Shibata S.Katsuyama A.Noguchi M. Agric. Biol. Chem. 1978, 42: 195Reference Ris Wihthout Link
- 2a 
             
            Aasen AJ.Kimland B.Enzell CR. Acta Chem. Scand. 1971, 25: 1481Reference Ris Wihthout Link
- 2b 
             
            Kimland B.Aasen AJ.Enzell CR. Acta Chem. Scand. 1972, 26: 2177Reference Ris Wihthout Link
- 2c 
             
            Aasen AJ.Kimland B.Enzell CR. Acta Chem. Scand. 1973, 27: 2107Reference Ris Wihthout Link
- 2d 
             
            Fujimori T.Kasuga R.Matsushita H.Kaneko H.Noguchi M. Agric. Biol. Chem. 1976, 40: 303Reference Ris Wihthout Link
- 2e 
             
            Behr D.Wahlberg I.Nishida T.Enzell CR. Acta Chem. Scand. 1978, 32: 391Reference Ris Wihthout Link
- 2f 
             
            D’Abrosca B.DellaGreca M.Fiorentino A.Monaco P.Oriano P.Temussi F. Phytochemistry 2004, 65: 497Reference Ris Wihthout Link
- 2g 
             
            Park JH.Lee DG.Yeon SW.Kwon HS.Ko JH.Shin DJ.Park HS.Kim YS.Bang MH.Baek NI. Arch. Pharm. Res. 2011, 34: 533Reference Ris Wihthout Link
- 3 
             
            Kato-Noguchi H.Yamamoto M.Tamura K.Teruya T.Suenaga K.Fujii Y. Plant Growth Regul. 2010, 60: 127Reference Ris Wihthout Link
- For a review, see:
- 4a 
             
            Kamei T.Morimoto S.Shishido K. J. Synth. Org. Chem. Jpn. 2006, 64: 1021Reference Ris Wihthout Link
- For recent synthetic studies, see:
- 4b 
             
            Kanematsu M.Soga K.Manabe Y.Morimoto S.Yoshida M.Shishido K. Tetrahedron 2011, 67: 4758Reference Ris Wihthout Link
- 4c 
             
            Yokoe H.Mitsuhashi C.Matsuoka Y.Yoshimura T.Yoshida M.Shishido K.
 J. Am. Chem. Soc. 2011, 133: 8854Reference Ris Wihthout Link
- 5 
             
            Kikuchi D.Yoshida M.Shishido K. Tetrahedron Lett. 2012, 53: 145Reference Ris Wihthout Link
- For reviews, see:
- 6a 
             
            Connon SJ.Blechert S. Angew. Chem. Int. Ed. 2003, 42: 1900Reference Ris Wihthout Link
- 6b 
             
            Poulson CS.Madsen R. Synthesis 2003, 1Reference Ris Wihthout Link
- 6c 
             
            Diber ST.Giessert A. Chem. Rev. 2004, 104: 1317Reference Ris Wihthout Link
- 6d 
             
            Mori M. J. Synth. Org. Chem. Jpn. 2005, 63: 5Reference Ris Wihthout Link
- For the syntheses of racemic 1, see:
- 7a 
             
            Loeber DE.Russell SW.Toube TP.Weedon CL. J. Chem. Soc. C 1971, 404Reference Ris Wihthout Link
- 7b 
             
            Takazawa O.Tamura H.Kogami K.Hayashi K. Bull. Chem. Soc. Jpn. 1982, 55: 1907Reference Ris Wihthout Link
- For the syntheses of optically active 1, see:
- 7c 
             
            Mori K. Tetrahedron Lett. 1973, 28: 2635Reference Ris Wihthout Link
- 7d 
             
            Mayer H. Helv. Chim. Acta 1980, 63: 154Reference Ris Wihthout Link
- 7e 
             
            Parry AD.Neill SJ.Horgan R. Phytochemistry 1990, 29: 1033Reference Ris Wihthout Link
- 7f 
             
            Ito M.
 J. Chem. Soc., Perkin Trans. 1 1998, 2565Reference Ris Wihthout Link
- 7g 
             
            Khachik F.Chang AN. J. Org. Chem. 2009, 74: 3875Reference Ris Wihthout Link
- 7h 
             
            Khachik F.Chang AN. Synthesis 2011, 509Reference Ris Wihthout Link
- 8 
             
            McMurry JE.Mats JR.Kees KL. Tetrahedron 1987, 43: 5489Reference Ris Wihthout Link
- For the syntheses of five-membered hetero- and carbocyclic dienes from the precursors with a 1,1-disubstituted alkene and an acetylene with a quaternary carbon center at the propargylic position, see:
- 9a 
             
            Kitamura T.Sato Y.Mori M. Chem. Commun. 2001, 1258Reference Ris Wihthout Link
- 9b 
             
            Kitamura T.Sato Y.Mori M. Adv. Synth. Catal. 2002, 344: 678Reference Ris Wihthout Link
- 9c 
             
            Fürstner A.Ackermann L.Gabor B.Goddard R.Lehmann CW.Mynott R.Stelzer F.Thiel OR. Chem. Eur. J. 2001, 7: 3236Reference Ris Wihthout Link
- 10 
             
            Mori M.Sakakibara N.Kinoshita A. J. Org. Chem. 1998, 63: 6082Reference Ris Wihthout Link
- 15 
             
            Kozikowski AP. Acc. Chem. Res. 1984, 17: 410Reference Ris Wihthout Link
- 16 
             
            Zhang Z.Curran DP. J. Chem. Soc., Perkin Trans. 1 1991, 2627Reference Ris Wihthout Link
- 17 
             
            Curran DP. J. Am. Chem. Soc. 1982, 104: 4042Reference Ris Wihthout Link
References and Notes
         Analytical Data
         
IR
         (neat): 3334, 2922, 1460, 1362, 1049, 918 cm-¹. ¹H
         NMR (400 MHz, CDCl3): δ = 6.16
         (ddd, J = 13.2,
         7.2, 1.6 Hz, 1 H), 5.26 (dd, J = 7.2,
         2.4 Hz, 1 H), 4.98 (dd, J = 13.2,
         2.4 Hz, 1 H), 4.05-3.92 (m, 1 H), 2.35 (dd, J = 16.8,
         5.6 Hz, 1 H), 2.01 (dd, J = 16.8,
         6.8 Hz, 1 H), 1.75 (ddd, J = 12.0,
         3.2, 2.0 Hz, 1 H), 1.71 (s, 3 H), 1.45 (t, J = 12.0
         Hz, 1 H), 1.35 (br s, 1 H), 1.05 (s, 3 H), 1.04 (s, 3 H). ¹³C
         NMR (100 MHz, CDCl3): δ = 138.1
         (Cq), 134.7 (CH), 125.6 (Cq), 118.7 (CH2), 65.1 (CH),
         48.3 (CH2), 42.2 (CH2), 36.6 (Cq), 30.0 (CH3),
         28.3 (CH3), 21.2 (CH3). ESI-HRMS: m/z calcd for C11H18ONa [M + Na]+:
         189.1255; found: 189.1255.
         Analytical Data
         
IR
         (neat): 3345, 2965, 2925, 1041, 892 cm-¹. ¹H
         NMR (400 MHz, CDCl3): δ = 5.99
         (s, 1 H), 4.98 (s, 1 H), 4.79 (s, 1 H), 3.99-3.92 (m, 1
         H), 2.37 (dd, J = 16.4,
         3.2 Hz, 1 H), 2.30 (dd, J = 16.4,
         9.6 Hz, 1 H), 1.84 (ddd, J = 13.2,
         3.6, 1.6 Hz, 1 H), 1.81 (s, 3 H), 1.70 (dd, J = 13.2,
         9.6 Hz, 1 H), 1.45 (br s, 1 H), 1.15 (s, 3 H), 1.14 (s, 3 H). ¹³C
         NMR (100 MHz, CDCl3): δ = 153.5
         (Cq), 133.1 (Cq), 127.9 (CH), 111.7 (CH2), 67.7 (CH),
         52.0 (CH2), 43.9 (CH2), 37.2 (Cq), 31.8 (CH3),
         29.4 (CH3), 26.7 (CH3). ESI-HRMS: m/z calcd for C11H18ONa [M + Na]+:
         189.1255; found: 189.1258.
The Wittig and Horner-Wadsworth-Emmons reactions of 13a,b were examined under various conditions; however, only starting aldehyde was recovered.
14It has been reported that the aldol reaction of 13a with acetone provided 1; however, the yield was not described. [7e] When the reaction was attempted under the same conditions as reported, 1 was not produced at all.
18
         Analytical Data
         
IR
         (neat): 3409, 2960, 2926, 1672, 1606, 1363, 1257, 1051 cm-¹. ¹H
         NMR (400 MHz, CDCl3): δ = 7.21
         (d, J = 16.4
         Hz, 1 H), 6.11 (d, J = 16.4
         Hz, 1 H), 4.06-3.95 (m, 1 H), 2.44 (dd, J = 17.6,
         5.2 Hz, 1 H), 2.30 (s, 3 H), 2.09 (dd, J = 17.6, 9.6,
         1 H), 1.80 (ddd, J = 12.4,
         3.2, 2.0 Hz, 1 H), 1.78 (s, 3 H), 1.49 (t, J = 12.4
         Hz, 1 H), 1.25 (br s, 1 H), 1.12 (s, 3 H), 1.11 (s, 3 H). ¹³C
         NMR (100 MHz, CDCl3): δ = 198.5
         (Cq), 142.3 (CH), 135.7 (Cq), 132.4 (CH), 132.2 (Cq), 64.5 (CH),
         48.4 (CH2), 42.8 (CH2), 36.9 (Cq), 30.1 (CH3),
         28.6 (CH3), 27.3 (CH3), 21.5 (CH3).
         ESI-HRMS: m/z calcd for C13H21O2 
[M + H]+:
         209.1542; found: 209.1539.
The optical resolution has been successfully achieved by Khachik et al. [7h]
 
    