Abstract
l-tert-Leucine
was found to be an effective organocatalyst for the asymmetric aldol
reaction of chloroacetone. The stereoselective synthesis of vic-halohydrins was accomplished with excellent
regioselectivity (>99%) to generate α-chloro-β-hydroxy ketones
with high syn selectivity (syn/anti = 16:1)
and enantioselectivity (up to 95% ee).
Key words
aldol reaction - amino acids - asymmetric synthesis - chloroacetone - organocatalysis
References and Notes
<A NAME="RU64911ST-1A">1a</A>
Lu C.
Luo Z.
Huang L.
Li X.
Tetrahedron: Asymmetry
2011,
22:
722
<A NAME="RU64911ST-1B">1b</A>
Bloom JD.
Dutia MD.
Johnson BD.
Wissner A.
Burns MG.
Largus EE.
Dolan JA.
Claus TH.
J.
Med. Chem.
1992,
35:
3081
<A NAME="RU64911ST-1C">1c</A>
Corey EJ.
Link JO.
J.
Org. Chem.
1991,
56:
442
<A NAME="RU64911ST-2A">2a</A>
Chung JYL.
Cvetovich R.
Amato J.
McWilliams JC.
Reamer R.
DiMichele L.
J. Org. Chem.
2005,
70:
3592
<A NAME="RU64911ST-2B">2b</A>
Draper J.
Britton R.
Org. Lett.
2010,
12:
4034
<A NAME="RU64911ST-3">3</A>
Yoshimitsu T.
Nakatani R.
Kobayashi A.
Tanaka T.
Org. Lett.
2011,
13:
908
<A NAME="RU64911ST-4">4</A>
Kang B.
Britton R.
Org. Lett.
2007,
9:
5083
<A NAME="RU64911ST-5A">5a</A>
Stewart CA.
VanderWerf CA.
J. Am. Chem. Soc.
1954,
76:
1259
<A NAME="RU64911ST-5B">5b</A>
Owen LN.
Saharia GS.
J.
Chem. Soc.
1953,
2582
<A NAME="RU64911ST-5C">5c</A>
Ranu BC.
Banerjee S.
J. Org.
Chem.
2005,
70:
4517
<A NAME="RU64911ST-5D">5d</A>
Yadav JS.
Reddy BVS.
Baishya G.
Harshavardhan SJ.
Chary CJ.
Gupta MK.
Tetrahedron
Lett.
2005,
46:
3569
<A NAME="RU64911ST-5E">5e</A>
Nishitani K.
Shinyama K.
Yamakawa K.
Heterocycles
2007,
74:
191
<A NAME="RU64911ST-5F">5f</A>
Neimi H.
Moradian M.
Polyhedron
2008,
27:
3639
<A NAME="RU64911ST-5G">5g</A>
Pajkert R.
Kolomeitsev AA.
Milewska M.
Röschenthaler G.-V.
Koroniak H.
Tetrahedron Lett.
2008,
49:
6046
<A NAME="RU64911ST-6">6</A>
Corey EJ.
Helal CJ.
Angew. Chem. Int. Ed.
1998,
37:
1986
<A NAME="RU64911ST-7A">7a</A>
Ohkuma T.
Tsutsumi K.
Utsumi N.
Arai N.
Noyori R.
Murata K.
Org. Lett.
2007,
9:
255
<A NAME="RU64911ST-7B">7b</A>
Bayston DJ.
Travers CB.
Polywka MEC.
Tetrahedron: Asymmetry
1998,
9:
2015
<A NAME="RU64911ST-7C">7c</A>
Cross DJ.
Kenny JA.
Houson I.
Campbell L.
Walsgrove T.
Wills M.
Tetrahedron: Asymmetry
2001,
12:
1801
<A NAME="RU64911ST-7D">7d</A>
Morris DJ.
Hayes AM.
Wills M.
J. Org. Chem.
2006,
71:
7035
<A NAME="RU64911ST-8A">8a</A>
Hamada T.
Torii T.
Izawa K.
Ikariya T.
Tetrahedron
2004,
60:
7411
<A NAME="RU64911ST-8B">8b</A>
Hamada T.
Torii T.
Izawa K.
Noyori R.
Ikariya T.
Org. Lett.
2002,
4:
4373
<A NAME="RU64911ST-8C">8c</A>
Matharu DS.
Morris DJ.
Kawamoto AM.
Clarkson GJ.
Wills M.
Org. Lett.
2005,
7:
5489
<A NAME="RU64911ST-9A">9a</A>
He L.
Tang Z.
Cun L.-F.
Mi A.-Q.
Jiang Y.-Z.
Gong L.-Z.
Tetrahedron
2006,
62:
346
<A NAME="RU64911ST-9B">9b</A>
Guillena G.
Hita MC.
Nájera C.
Tetrahedron:
Asymmetry
2007,
18:
1272
<A NAME="RU64911ST-9C">9c</A>
Sato K.
Kuriyama M.
Shimazawa R.
Morimoto T.
Kakiuchi K.
Shirai R.
Tetrahedron Lett.
2008,
49:
2402
<A NAME="RU64911ST-9D">9d</A>
Russo A.
Botta G.
Lattanzi A.
Tetrahedron
2007,
63:
11886
<A NAME="RU64911ST-9E">9e</A>
Xu X.-Y.
Wang Y.-Z.
Gong L.-Z.
Org.
Lett.
2007,
9:
4247
<A NAME="RU64911ST-10A">10a</A>
Machajewski TD.
Wong C.-H.
Angew.
Chem. Int. Ed.
2000,
39:
1352
<A NAME="RU64911ST-10B">10b</A>
Vogl HGEM.
Shibasaki M.
Chem. Eur.
J.
1998,
4:
1137
<A NAME="RU64911ST-10C">10c</A>
Nelson SG.
Tetrahedron: Asymmetry
1998,
9:
357
<A NAME="RU64911ST-10D">10d</A>
Guillena G.
Nájera C.
Ramón DJ.
Tetrahedron: Asymmetry
2007,
18:
2249
<A NAME="RU64911ST-10E">10e</A>
Mukherjee S.
Yang JW.
Hoffmann S.
List B.
Chem. Rev.
2007,
107:
5471
<A NAME="RU64911ST-11">11</A>
Optimized Procedure
for the Synthesis of 3a
To a mixture of chloroacetone
(1a, 400 µL, 5 mmol) and l-tert-leucine
(13 mg, 0.1 mmol), 4-nitrobenzaldehyde (2a,
76 mg, 0.5 mmol) was added, and the mixture was stirred at r.t. The
reaction was monitored by TLC analysis. After 7 d, H2O was
added and extracted with CH2Cl2 (3×),
dried over MgSO4, and concentrated in vacuo. To determine
the regioselectivity and the diastereomeric ratio, the remaining residue
was analyzed by ¹H NMR. Moreover, the ee value
of the product 3a was determined by chiral-phase
HPLC analysis of the residue. Then, the residue was purified by column
chromatography on silica gel in gradient elution with hexane-EtOAc
to give a 7:1 inseparable mixture of the desired products 3a and 4a (108
mg, 89%).
Analytical Data
for Compound 3a
¹H NMR (400 MHz,
CDCl3): δ = 8.24-8.20 (m,
2 H), 7.61-7.58 (m, 2 H), 5.47 (t, J = 3.6
Hz, 1 H), 4.46 (d, J = 3.2
Hz, 1 H), 3.43 (d, J = 4.0
Hz, 1 H), 2.40 (s, 3 H). ¹³C NMR (100 MHz,
CDCl3): δ = 203.4, 147.6, 146.2, 127.3,
123.5, 72.0, 67.3, 28.3. HPLC: 83% ee [Daicel
CHRALCEL OJ-H, hexane-iPrOH (9:1), flow rate 1.0 mL/min, λ = 254
nm]: t
R(major) = 34.7
min; t
R(minor) = 39.1
min.
<A NAME="RU64911ST-12">12</A>
Kanemitsu T.
Umehara A.
Miyazaki M.
Nagata K.
Itoh T.
Eur.
J. Org. Chem.
2011,
993
<A NAME="RU64911ST-13A">13a</A>
Notz W.
List B.
J.
Am. Chem. Soc.
2000,
122:
7386
<A NAME="RU64911ST-13B">13b</A>
Sakthivel K.
Notz W.
Bui T.
Barbas CF.
J. Am. Chem. Soc.
2001,
123:
5260
<A NAME="RU64911ST-13C">13c</A>
Córdova A.
Notza W.
Barbas CF.
Chem. Commun.
2002,
3024
<A NAME="RU64911ST-13D">13d</A>
Guillena G.
Hita MC.
Nájera C.
Tetrahedron: Asymmetry
2006,
17:
1027
<A NAME="RU64911ST-13E">13e</A>
Guillena GMC.
Nájera C.
Viózquez SF.
Tetrahedron:
Asymmetry
2007,
18:
2300
<A NAME="RU64911ST-14A">14a</A>
Ramasastry SSV.
Zhang H.
Tanaka F.
Barbas CF..
J. Am. Chem. Soc.
2007,
129:
288
<A NAME="RU64911ST-14B">14b</A>
Ramasastry SSV.
Albertshofer K.
Utsumi N.
Tanaka F.
Barbas CF.
Angew.
Chem. Int. Ed.
2007,
46:
5572
<A NAME="RU64911ST-14C">14c</A>
Wu X.
Jiang Z.
Shen HM.
Lu Y.
Adv. Synth. Catal.
2007,
349:
812
<A NAME="RU64911ST-14D">14d</A>
Utsumi N.
Imai M.
Tanaka F.
Ramasastry SSV.
Barbas CF.
Org. Lett.
2007,
9:
3445
<A NAME="RU64911ST-14E">14e</A>
Da C S.
Che LP.
Guo QP.
Wu FC.
Ma X.
Jia YN.
J. Org. Chem.
2009,
74:
2541
<A NAME="RU64911ST-14F">14f</A>
Larionova NA.
Kucherenko
AS.
Siyutkin DE.
Zlotin SG.
Tetrahedron
2011,
67:
1948
<A NAME="RU64911ST-14G">14g</A>
Wu X.
Ma Z.
Ye Z.
Qian S.
Zhao G.
Adv. Synth.
Catal.
2009,
351:
158
<A NAME="RU64911ST-14H">14h</A>
Li J.
Luo S.
Cheng JP.
J.
Org. Chem.
2009,
74:
1747
<A NAME="RU64911ST-15A">15a</A>
Banerjee R.
Desiraju GR.
Mondal R.
Howard JAK.
Chem. Eur. J.
2004,
10:
3373
<A NAME="RU64911ST-15B">15b</A>
In this paper (ref.
15a), Howard and co-workers claimed that chlorine in organic compound
is able to work as an intramolecular hydrogen bond acceptor. Their
results support the proposed mechanism of our reaction system.