Subscribe to RSS
DOI: 10.1055/s-0031-1290208
NHC-Catalyzed Chemo- and Regioselective Hydrosilylation of Carbonyl Derivatives
Publication History
Publication Date:
26 January 2012 (online)

Abstract
The hydrosilylation of carbonyl derivatives has been explored by the activation of diphenylsilane in the presence of a catalytic amount of an N-heterocyclic carbene (NHC). Presumably, a hypervalent silicon intermediate featuring strong Lewis acid character allows dual activation of both the carbonyl moiety and the hydride at the silicon center. Reduction under mild conditions could be accomplished using this organocatalytic process. Some interesting selectivities have been encountered.
Key words
hydrosilylation - N-heterocyclic carbenes - organocatalysis - reduction - green chemistry
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 2a
Ojima I. In The Chemistry of Organic Silicon CompoundsPatai S.Rappoport Z. Wiley; New York: 1989.Reference Ris Wihthout Link - 2b
Marciniec B. Comprehensive Handbook on Hydrosilylation Pergamon Press; Oxford: 1992.Reference Ris Wihthout Link - 2c
Marciniec B. In Applied Homogeneous Catalysis with Organometallic Compounds Vol. 1:Cornils B.Herrmann WA. Wiley-VCH; Weinheim: 1996. Chap. 2.Reference Ris Wihthout Link - 2d
Vorbrüggen H. In Silicon-Mediated Transformations of Functional Groups Wiley-VCH; Weinheim: 2004.Reference Ris Wihthout Link - 2e
Hydrosilylation:
A Comprehensive Review on Recent Advances (Advances in Silicon Science)
Marciniec B. Springer; Berlin: 2008.Reference Ris Wihthout Link - 2f
Modern
Reduction Methods
Andersson PG.Munslow IJ. Wiley-VCH; Weinheim: 2008.Reference Ris Wihthout Link - 2g
Hydrosilylation:
A Comprehensive Review on Recent Advances
Marciniec B. Springer; Heidelberg: 2009.Reference Ris Wihthout Link - 3a
Nishiyama H. Transition Metals for Organic SynthesisBeller M.Bolm C. Wiley-VCH; Weinheim: 2004.Reference Ris Wihthout Link - 3b
Ohkuma T.Noyori R. In Comprehensive Asymmetric CatalysisJacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999.Reference Ris Wihthout Link - 3c
Ikariya T.Blacker J. Acc. Chem. Res. 2007, 40: 1300Reference Ris Wihthout Link - 3d
Nishiyama H.Itoh K. In Catalytic Asymmetric SynthesisOjima I. Wiley-VCH; Weinheim: 2000.Reference Ris Wihthout Link - 3e
Marko I.Sterin S.Buisine O.Mignani G.Branlard P.Tinant B.Declercq J.-P. Science 2002, 298: 204Reference Ris Wihthout Link - For copper catalysts, see:
- 4a
Mahoney WS.Brestensky DM.Stryker JM. J. Am. Chem. Soc. 1988, 110: 291Reference Ris Wihthout Link - 4b
Mahoney WS.Stryker JM. J. Am. Chem. Soc. 1989, 111: 8818Reference Ris Wihthout Link - 4c
Lipshutz BH.Noson K.Chrisman W.
J. Am. Chem. Soc. 2001, 123: 12917Reference Ris Wihthout Link - 4d
Lipshutz BH.Lower A.Noson K. Org. Lett. 2002, 4: 4045Reference Ris Wihthout Link - 4e
Lipshutz BH.Noson K.Chrisman W.Lower A.
J. Am. Chem. Soc. 2003, 125: 8779Reference Ris Wihthout Link - 4f
Lipshutz BH.Frieman BA. Angew. Chem. Int. Ed. 2005, 44: 6345Reference Ris Wihthout Link - 4g
Lipshutz BH.Frieman BA.Tomaso AE. Angew. Chem. Int. Ed. 2006, 45: 1259Reference Ris Wihthout Link - 4h
Hughes G.Kimura M.Buchwald SL. J. Am. Chem. Soc. 2003, 125: 11253Reference Ris Wihthout Link - 4i
Yun J.Kim D.Yun H. Chem. Commun. 2005, 5181Reference Ris Wihthout Link - 4j
Díez-González S.Kauer H.Zinn FK.Stevens ED.Nolan SP. J. Org. Chem. 2005, 70: 4784Reference Ris Wihthout Link - 4k
Rendler S.Oestreich M. Angew. Chem. Int. Ed. 2007, 46: 498Reference Ris Wihthout Link - 4l
Kantam ML.Laha S.Yadav J.Likhar PR.Sreedhar B.Jha S.Bhargava S.Udayakiran M.Jagadeesh B. Org. Lett. 2008, 10: 2979Reference Ris Wihthout Link - 4m
Zhang X.Wu Y.Yu F.Wu F.Wu J.Chan A. Chem. Eur. J. 2009, 15: 5888Reference Ris Wihthout Link - 4n
Kassube JK.Wadepohl H.Gade LH. Adv. Synth. Catal. 2009, 351: 607Reference Ris Wihthout Link - 4o
Junge K.Wendt B.Addis D.Zhou S.Das S.Beller M. Chem. Eur. J. 2010, 16: 68Reference Ris Wihthout Link - 4p
Fujihara T.Semba K.Terao J.Tsuji Y. Angew. Chem. Int. Ed. 2010, 49: 1472Reference Ris Wihthout Link - For iron catalysts, see:
- 5a
Nishiyama H.Furuta A. Chem. Commun. 2007, 760Reference Ris Wihthout Link - 5b
Shaikh NS.Junge K.Beller M. Org. Lett. 2007, 9: 5429Reference Ris Wihthout Link - 5c
Shaikh NS.Enthaler S.Junge K.Beller M. Angew. Chem. Int. Ed. 2008, 47: 2497Reference Ris Wihthout Link - 5d
Sui-Seng C.Freutel F.Lough AJ.Morris RH. Angew. Chem. Int. Ed. 2008, 47: 940Reference Ris Wihthout Link - 5e
Gutsulyak DV.Kuzmina LG.Howard JAK.Vyboishchikov SF.Nikonov GI. J. Am. Chem. Soc. 2008, 130: 3732Reference Ris Wihthout Link - 5f
Tondreau AM.Lobkovsky E.Chirik PJ. Org. Lett. 2008, 10: 2789Reference Ris Wihthout Link - 5g
Yang J.Tilley TD. Angew. Chem. Int. Ed. 2010, 47: 940Reference Ris Wihthout Link - For organocatalytic hydrosilylation of carbonyl functions, see:
- 6a
Parks DJ.Piers WE. J. Am. Chem. Soc. 1996, 118: 9440Reference Ris Wihthout Link - 6b
Parks DJ.Blackwell JM.Piers WE.
J. Org. Chem. 2000, 65: 3090Reference Ris Wihthout Link - 6c
Asao N.Ohishi T.Sato K.Yamamoto Y. J. Am. Chem. Soc. 2001, 123: 6931Reference Ris Wihthout Link - 6d
Iwasaki F.Onomura O.Mishima K.Maki T.Matsumura Y. Tetrahedron Lett. 1999, 40: 7507Reference Ris Wihthout Link - 6e
Matsumura Y.Ogura K.Kouchi Y.Iwasaki F.Onomura O. Org. Lett. 2006, 8: 3789Reference Ris Wihthout Link - 6f
Malkov AV.Liddon AJPS.Ramirez-Lopez P.Bendova L.Haigh D.Kocovsky P. Angew. Chem. Int. Ed. 2006, 45: 1432Reference Ris Wihthout Link - For selective organocatalytic hydrosilylation of ketimines, see:
- 6g
Iwasaki F.Onomura O.Mishima K.Kanematsu T.Maki T.Matsumura Y. Tetrahedron Lett. 2001, 42: 2525Reference Ris Wihthout Link - 6h
Malkov AV.Mariani A.MacDougall K.Kočovský P. Org. Lett. 2004, 6: 2253Reference Ris Wihthout Link - 6i
Malkov AV.Stončius S.MacDougall KN.Mariani A.McGeoch GD.Kočovský P. Tetrahedron 2006, 62: 264Reference Ris Wihthout Link - For silane activation by NHCs, see:
- 7a
Zhao Q.Curran DP.Malacria M.Fensterbank L.Goddard J.-P.Lacote E. Chem. Eur. J. 2011, 17: 9911Reference Ris Wihthout Link - 7b
O’Brien JM.Hoveyda AH. J. Am. Chem. Soc. 2011, 133: 7712Reference Ris Wihthout Link - 7c
Fuchter MJ. Chem. Eur. J. 2010, 16: 12286Reference Ris Wihthout Link - 7d
Tan M.Zhang Y.Ying JY. Adv. Synth. Catal. 2009, 351: 1390Reference Ris Wihthout Link - For extensions of this activation to polymerizations, see:
- 7e
Raynaud J.Ciolino A.Baceiredo A.Destarac M.Bonete F.Kato T.Gnanou Y.Taton D. Angew. Chem. Int. Ed. 2008, 47: 5390Reference Ris Wihthout Link - 7f
Raynaud J.Liu N.Gnanou Y.Taton D. Macromolecules 2010, 43: 8853Reference Ris Wihthout Link - 7g For the activation of a
Si-Sn bond, see:
Blanc R.Commeiras L.Parrain J.-L. Adv. Synth. Catal. 2010, 352: 661Reference Ris Wihthout Link - 7h For carbene activation
of the Si-H bond of silanes, see:
Frey GD.Masuda JD.Donnadieu B.Bertrand G. Angew. Chem. Int. Ed. 2010, 49: 9444Reference Ris Wihthout Link - 7i For carbene activation
of the Si-O bond of siloxanes, see:
Rodriguez M.Marrot S.Kato T.Stérin S.Fleury E.Baceiredo A. J. Organomet. Chem. 2007, 692: 705Reference Ris Wihthout Link - 9a
Tandura SN.Voronkov MG.Alekseev NV. Top. Curr. Chem. 1986, 131: 99Reference Ris Wihthout Link - 9b
Chult C.Corriu RJP.Reye C.Young JC. Chem. Rev. 1993, 93: 1371Reference Ris Wihthout Link - 9c
Tamao K. Proc. Jpn. Acad., Ser. B 2008, 84: 123Reference Ris Wihthout Link - 9d
Holmes RR. Chem. Rev. 1996, 96: 927Reference Ris Wihthout Link - 9e
Dilman AD.Loffe SL. Chem. Rev. 2003, 103: 733Reference Ris Wihthout Link - 9f
Rendler S.Oestreich M. Synthesis 2005, 1727Reference Ris Wihthout Link - 10a
Breeden SW.Lawrence NJ. Synlett 1994, 833Reference Ris Wihthout Link - 10b
Barr KJ.Berk SC.Buchwald SL. J. Org. Chem. 1994, 59: 4323Reference Ris Wihthout Link - 10c
LaRonde FJ.Brook MA. Tetrahedron Lett. 1999, 40: 3507Reference Ris Wihthout Link - 11a
Kuhn N.Kartz T.Bläser D.Boese R. Chem. Ber. 1995, 128: 245Reference Ris Wihthout Link - 11b For the preparation of
base-free NHC samples, see:
Read de Alaniz J.Rovis T. J. Am. Chem. Soc. 2005, 127: 6284Reference Ris Wihthout Link - For representative hydrosilylation of nitriles, see:
- 12a
Khalimon AY.Simionescu R.Kuzmina LG.Howard JAK.Nikonov GI. Angew. Chem. Int. Ed. 2008, 47: 7701Reference Ris Wihthout Link - 12b
Peterson E.Khalimon AY.Simionescu R.Kuzmina LG.Howard JAK.Nikonov GI. J. Am. Chem. Soc. 2009, 131: 908Reference Ris Wihthout Link - 12c
Gutsulyak DV.Nikonov GI. Angew. Chem. Int. Ed. 2010, 49: 7553Reference Ris Wihthout Link - 12d
Watanabe T.Hashimoto H.Tobita H. J. Am. Chem. Soc. 2007, 128: 2176Reference Ris Wihthout Link - 12e
Ochiai M.Hashimoto H.Tobita H. Angew. Chem. Int. Ed. 2007, 46: 8192Reference Ris Wihthout Link - For representative hydrosilylation of esters, see:
- 13a
Mao Z.Gregg BT.Cutler AR. J. Am. Chem. Soc. 1995, 117: 10139Reference Ris Wihthout Link - 13b
Ojima I.Kogure T.Kumagai M. J. Org. Chem. 1977, 42: 1671Reference Ris Wihthout Link - 13c
Igarashi M.Mizuno R.Fuchikami T. Tetrahedron Lett. 2001, 42: 2149Reference Ris Wihthout Link - 13d
Berc SC.Kreutzer KA.Buchwald SL. J. Am. Chem. Soc. 1991, 113: 5093Reference Ris Wihthout Link - 13e
Berc SC.Buchwald SL. J. Org. Chem. 1992, 57: 3751Reference Ris Wihthout Link - 14
Hanada S.Yuasa A.Kuroiwa H.Motoyama Y.Nagashima H. Eur. J. Org. Chem. 2010, 1021Reference Ris Wihthout Link - For reviews of N-heterocyclic carbenes as organocatalysts, see:
- 15a
Enders D.Balensiefer T. Acc. Chem. Res. 2004, 37: 53Reference Ris Wihthout Link - 15b
Marion N.Díez-González S.Nolan SP. Angew. Chem. Int. Ed. 2007, 46: 2988Reference Ris Wihthout Link - 15c
Enders D.Niemeier O.Henseler A. Chem. Rev. 2007, 107: 5606Reference Ris Wihthout Link - 15d
Nair V.Vellalath V.Babu BP. Chem. Soc. Rev. 2008, 37: 2691Reference Ris Wihthout Link - 15e
DiRocco DA.Rovis T. J. Am. Chem. Soc. 2011, 133: 10402Reference Ris Wihthout Link - 16 For an intramolecular hydrosilylation
of β-silyloxy ketones, see:
O’Neil GW.Miller MM.Carter KP. Org. Lett. 2010, 12: 5350Reference Ris Wihthout Link
References
Present address: Institut de Chimie des Substances Naturelles CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
8Hydrosilylation of ketone and imine with poly-NHC particles was reported recently, see ref. 7d.
17The triazolium chloride salt (24.4
mg, 0.1equiv) was added to a suspension of NaH (60% in
mineral oil, 4 mg, 0.1 equiv) in anhydrous DMF (1 mL) at r.t. After
stirring for 30 min, H2SiPh2 (111 mg, 0.6
equiv) and the substrate (1 mmol) dissolved in anhydrous DMF (1
mL) were added to the reaction mixture. When no more substrate was
seen by TLC analysis, TBAF (1.0 M in THF, 1 mL, 1 equiv) was added to the
solution. Stirring was continued for 30 min and quenching was achieved
with H2O (10 mL). The mixture was extracted with EtOAc
(3 × 10 mL) and the combined organic
layers were washed with brine (10 mL), dried with anhydrous Na2SO4,
filtered, and the solution was concen-trated in vacuo. The crude
product was purified by flash chromatography.
Analytical
data for some typical examples: Compound 2c: ¹H
NMR (400 MHz, CDCl3): δ = 7.61 (d, J = 8.0 Hz,
2 H), 7.47 (q, J = 8.0 Hz,
2 H), 4.93 (q, J = 6.0 Hz,
1 H), 2.31 (br s, 3 H), 1.47 (d, J = 6.8 Hz,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 151.2,
132.3, 126.1, 118.9, 111.0, 70.0, 25.4. Compound 2d: ¹H
NMR (400 MHz, CDCl3): δ = 7.97 (d, J = 8.0 Hz,
2 H), 7.40 (q, J = 8.0 Hz,
2 H), 4.92 (q, J = 6.4 Hz,
1 H), 3.88 (s, 3 H), 2.49 (br s, 1 H),
1.47 (d, J = 6.4 Hz,
3 H). ¹³C NMR (100 MHz, CDCl3): δ = 167.1, 151.1,
129.8, 129.1, 125.3, 69.9, 52.1, 25.3. Compound 2h: ¹H
NMR (400 MHz, CDCl3): δ = 7.42 (d, J = 5.6 Hz,
1 H), 7.29-7.22 (m, 3 H), 5.24 (t, J = 6.0 Hz,
1 H), 3.06 (m, 1 H), 2.82 (m, 1 H), 2.53-2.44
(m, 1 H), 1.99-1.90 (m, 2 H). ¹³C NMR
(100 MHz, CDCl3): δ = 145.0, 143.3,
128.3, 126.7, 124.9, 124.2, 76.4, 35.9, 29.8. Compound 2j (syn/anti, 2.5:1): ¹H
NMR (400 MHz, CDCl3): δ = 7.50-7.27
(m, 20 H, syn and anti), 5.00 (t, J = 2.0 Hz,
1 H, anti), 4.73 (t, J = 4.2 Hz,
1 H, syn), 4.17 (d, J = 2.0 Hz,
1 H, anti), 4.04 (d, J = 2.0 Hz,
1 H, syn), 3.34 (dd, J = 4.2, 2.0 Hz,
1 H, syn), 3.32 (dd, J = 2.8, 2.0 Hz,
1 H, anti), 3.01 (d, J = 4.2 Hz,
1 H, syn), 2.85 (d, J = 2.4 Hz,
1 H, anti). ¹³C
NMR (100 MHz, CDCl3): δ = 140.2 (syn), 139.4 (anti),
136.6 (anti), 136.4 (syn),
128.8 (syn), 128.7 (anti),
128.6 (syn and anti),
128.5 (syn), 128.4 (anti),
128.3 (syn and anti),
126.7 (anti), 126.3 (syn),
125.8 (syn and anti),
73.5 (syn), 71.3 (anti),
65.9 (syn), 65.1 (anti),
57.0(syn), 55.2 (anti).
Compound 2l: ¹H NMR (400
MHz, CDCl3): δ = 3.54 (m, 1 H),
1.84-1.67 (m, 5 H), 1.30-0.91 (m, 10 H). ¹³C
NMR (100 MHz, CDCl3): δ = 72.4, 45.1,
28.7, 28.4, 26.5, 26.2, 26.1, 20.4. Compound 4: ¹H NMR
(400 MHz, CDCl3): δ = 7.35-7.24
(m, 5 H), 4.90 (br s, 1 H), 4.31 (d, J = 4.8 Hz,
2 H), 1.47 (s, 9 H). ¹³C
NMR (100 MHz, CDCl3): δ = 155.9, 139.0,
128.6, 127.5, 127.3, 79.5, 44.7, 28.4. Compound 6: ¹H
NMR (400 MHz, CDCl3): δ = 6.04 (d, J = 16.0 Hz,
1 H), 5.48 (dd, J = 16.0,
6.8 Hz, 1 H), 4.35 (sext., J = 6.4 Hz,
1 H), 1.97 (t, J = 6.4 Hz,
2 H), 1.66 (s, 3 H), 1.62-1.51 (m, 3 H),
1.44 (m, 2 H), 1.32 (d, J = 6.0 Hz,
3 H), 0.98 (s, 6 H). ¹³C
NMR (100 MHz, CDCl3): δ = 137.6, 136.6,
128.8, 127.5, 69.5, 39.4, 33.9, 32.7, 28.7, 28.6, 23.6, 21.3, 19.2.
Compound 12: ¹H NMR
(400 MHz, CDCl3): δ = 7.40-7.26
(m, 5 H), 4.1 (s, 1 H), 3.74 (d, J = 11.6 Hz,
2 H), 3.19 (d, J = 11.6 Hz,
1 H), 2.92 (br s, 1 H), 0.73-0.62 (m,
3 H), 0.48-0.44 (m, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 142.1, 128.2,
127.5, 126.2, 79.7, 68.4, 27.5, 9.8, 8.0.