References and Notes
1a
Gerwick WH.
Lopez A.
Van Duyne GD.
Clardy J.
Ortiz W.
Baez A.
Tetrahedron
Lett.
1986,
27:
1979
1b
Gerwick AWH.
J. Nat. Prod.
1989,
52:
252
1c
Yoon JS.
Lee MK.
Sung SH.
Kim YC.
J.
Nat. Prod.
2006,
69:
290
2a
Gomes A.
Freitas M.
Fernandes E.
Lima JLFC.
Mini-Rev. Med. Chem.
2010,
10:
1
2b
Silva AMS.
Pinto DCG.
Cavaleiro JAS.
Levai A.
Patonay T.
ARKIVOC
2004,
(vii):
106
3
Pinto DCGA.
Silva AMS.
Almeida LMPM.
Cavaleiro JAS.
Levai A.
Patonay T.
J. Heterocycl. Chem.
1998,
35:
217
4
Doria G.
Romeo C.
Forgione A.
Sberze P.
Tibolla N.
Corno ML.
Cruzzola G.
Cadelli G.
Eur. J. Med. Chem.
1979,
347
5a
Momoi K.
Sugita Y.
Ishihara M.
Satoh K.
Kikuchi H.
Hashimoto K.
Yokoe I.
Nishikawa H.
Fujisawa S.
Sakagami H.
In Vivo
2005,
19:
157
5b
Marinho J.
Pedro M.
Pinto DCGA.
Silva AMS.
Cavaleiro JAS.
Sunkel CE.
Nascimento MSJ.
Biochem. Pharmacol.
2008,
75:
826
5c
Shaw AY.
Chang CY.
Liau HH.
Lu PJ.
Chen HL.
Yang CN.
Li HY.
Eur. J. Med. Chem.
2009,
2552
5d
Pinto DCGA.
Silva AMS.
Cavaleiro JAS.
New
J. Chem.
2000,
24:
85
6a
Desideri N.
Conti C.
Mastromarino P.
Mastropaolo F.
Antivir.
Chem. Chemother.
2000,
11:
373
6b
Desideri N.
Mastromarino P.
Conti C.
Antivir.
Chem. Chemother.
2003,
14:
195
6c
Conti C.
Mastromarino P.
Goldoni P.
Portalone G.
Desideri N.
Antivir.
Chem. Chemother.
2005,
16:
267
7a
Fernandes E.
Carvalho F.
Silva AMS.
Santos CMM.
Pinto DCGA.
Cavaleiro JAS.
Bastos ML.
J. Enzyme Inhib. Med.
Chem.
2002,
17:
45
7b
Fernandes E.
Carvalho M.
Carvalho F.
Silva AMS.
Santos CMM.
Pinto DCGA.
Cavaleiro JAS.
Bastos ML.
Arch. Toxicol.
2003,
77:
500
7c
Filipe P.
Silva AMS.
Morliere P.
Brito CM.
Patterson LK.
Hug GL.
Silva JN.
Cavaleiro JAS.
Maziere J.-C.
Freitas JP.
Santus R.
Biochem.
Pharmacol.
2004,
67:
2207
7d
Gomes A.
Fernandes E.
Silva AMS.
Santos CMM.
Pinto DCGA.
Cavaleiro JAS.
Lima JLFC.
Bioorg. Med. Chem.
2007,
15:
6027
8
Gomes A.
Fernandes E.
Silva AMS.
Pinto DCGA.
Santos CMM.
Cavaleiro JAS.
Lima JLFC.
Biochem. Pharmacol.
2009,
78:
171
9
Karton Y.
Jiang J.-L.
Ji X.-D.
Melman N.
Olah ME.
Stiles GL.
Jacobson KA.
J. Med. Chem.
1996,
39:
2293
10
Perlmutter P. In Conjugate Addition Reactions in Organic Synthesis
Pergamon
Press;
Oxford:
1992.
11a
Vuagnoux-d’Augustin M.
Alexakis A.
Chem. Eur. J.
2007,
13:
9647
11b
Alexakis A.
Benhaim C.
Eur. J. Org. Chem.
2002,
3221
11c
Krause N.
Hoffmann-Röder A.
Synthesis
2001,
171
11d
Hayashi T.
Acc.
Chem. Res.
2000,
33:
354
12
Almasi D.
Alonso DA.
Najera C.
Tetrahedron: Asymmetry
2007,
18:
299
Review:
13a
Krause N.
Thorand S.
Inorg. Chim. Acta
1999,
296:
1
13b
Csákÿ AG.
de la Herrán G.
Murcia MC.
Chem. Soc. Rev.
2010,
39:
4080
14a
Oliva CG.
Silva AMS.
Paz FAA.
Cavaleiro JAS.
Synlett
2010,
1123
14b
Oliva CG.
Silva AMS.
Resende DISP.
Paz FAA.
Cavaleiro JAS.
Eur. J. Org. Chem.
2010,
3449
15
Typical Procedure
for the Preparation of 2-(2-Aryl-3-nitromethyl)chromones 2a-d
A
flask containing the appropriate (E)-2-styrylchromone 1a-d (0.104
mmol), nitromethane (0.33 mL), and DBU
(3 µL,
0.021 mmol) was flushed with nitrogen and stirred vigorously at
r.t. After the appropriate time (Table
[²]
), the solvent was evaporated
under reduced pressure. The residue was taken in EtOAc and purified
by preparative TLC on silica. Elution with hexane-EtOAc
(7:3 or 1:1) gave the desired products 2a-d (for yields see Table
[²]
).
16
Physical Data
of 2-(3-Nitro-2-phenylpropyl)-4
H
-chromen-4-one (2a)
Colourless
oil. ¹H NMR (300 MHz, CDCl3): δ = 8.12
(1 H, dd, J = 1.6, 8.1 Hz, H-5),
7.65 (1 H, ddd, J = 1.6, 7.0,
8.5 Hz, H-7), 7.41-7.18 (7 H, m, H-Ph, H-6, and H-8), 6.03
(1 H, s, H-3), 4.72 (2 H, d, J = 7.6
Hz, β-CH2NO2), 4.11-4.01
(1 H, m, H-β), 3.09 (1 H, dd, J = 6.5,
14.5 Hz, H-α), 3.00 (1 H, dd, J = 8.8,
14.5 Hz, H-α). ¹³C NMR (75
MHz, CDCl3): δ = 177.7 (C-4), 164.8
(C-2), 156.2 (C-9), 137.2 (C-1′), 133.7 (C-7), 129.2 (C-3′,5′),
128.3 (C-4′), 127.2 (C-2′,6′), 125.7 (C-5),
125.2 (C-6), 123.5 (C-10), 117.7 (C-8), 111.8 (C-3), 79.4 (β-CH2NO2), 41.9 (C-β),
38.1 (C-α). HRMS (ESI+):
m/z calcd for C18H16NO4 [M + H]+:
310.1074; found: 310.1074.
17
Patoilo DT.
Silva AMS.
Cavaleiro JAS.
Synlett
2010,
1381
18
(
Z
)-(2-Hydroxyphenyl)
(4-Phenylpyrrolidin-2-ylidene)methyl Ketone (3a)
Yellow
solid; mp 113-115 ˚C. ¹H
NMR (500 MHz, CDCl3): δ = 13.80 (1
H, s, OH), 9.95 (1 H, s, NH), 7.65 (1 H, dd, J = 1.4,
8.0 Hz, H-6′′′), 7.37-7.24 (6
H, m, H-Ph and H-4′′′), 6.93 (1 H, dd, J = 1.0, 8.3 Hz, H-3′′′),
6.82-6.79 (1 H, m, H-5′′′),
5.87 (1 H, s, H-2), 4.08 (1 H, ddd, J = 1.0,
7.7, 10.6 Hz, H-5′), 3.71 (1 H, dd, J = 7.7,
10.6 Hz, H-5′), 3.64 (1 H, quin, J = 7.7
Hz, H-4′), 3.19 (1 H, dd, J = 7.7,
16.9 Hz, H-3′), 2.93 (1 H, dd, J = 7.6,
16.9 Hz, H-3′). ¹³C NMR (75
MHz, CDCl3): δ = 191.3 (C-1), 168.6
(C-2′), 162.3 (C-2′′′), 141.8 (C-1′′),
133.5 (C-4′′′), 128.9 (C-3′′,5′′),
127.7 (C-6′′′), 127.2 (C-4′′),
126.8 (C-2′′,6′′), 120.3 (C-1′′′),
118.2 (C-3′′′), 118.1 (C-5′′′),
85.4 (C-2), 55.2 (C-5′), 41.2 (C-3′), 40.7 (C-4′). HRMS
(ESI+): m/z calcd
for C18H18NO2 [M + H]+:
280.1332; found: 280.1332.
19
Typical Procedure
for the Preparation of the 2-Substituted 4-Arylpyrrole Derivatives
3a-d Using Method A
Ammonium
formate (0.864 mmol) and Pd/C (10%; 7.0 mg) were
added to a solution of the appropriate 2-(2-aryl-3-nitropropyl)-4H-chromen-4-one 2a-d (0.082 mmol) in acetone (1 mL), and the
reaction mixture was refluxed for 1 h. After cooling to r.t., the
reaction mixture was filtered through Celite, and the organic layer
was evaporated to dryness. The residue was purified by preparative
TLC on silica and eluted with a mixture of hexane-EtOAc
(7:3) to give 3a-d (for
yields see Table
[³]
).
20
Burros AIRNA.
Silva AMS.
Tetrahedron Lett.
2003,
44:
5893
21
Typical Procedure
for the Preparation of the 2-Substituted 4-Arylpyrrole Derivatives
3a-d Using Method B
To
a solution of the appropriate 2-(2-aryl-3-nitropropyl)-4H-chromen-4-one 2a-d (0.082 mmol) in CHCl3 (10
mL), tin (powder, 0.81 g) and concd HCl (2.7 mL) were added, and the
reaction mixture was stirred for 2 h at r.t. After this period,
the reaction mixture was neutralized with NaHCO3, filtered
through Celite, and the solid residue washed with H2O
and CHCl3. The filtrate was extracted with CHCl3 (3 × 15
mL), the organic layer dried over Na2SO4,
and concentrated in vacuo. The residue was purified by preparative
TLC on silica eluting with a mixture of hexane-EtOAc (7:3)
to afford 3a-d (for
yields see Table
[³]
).