RSS-Feed abonnieren
DOI: 10.1055/s-0031-1286367
© Georg Thieme Verlag KG Stuttgart · New York
Die Anpresskraftkontrolle als Schlüssel zur sicheren strahlenfreien Katheterablation der AV-Knoten-Reentrytachykardie
Contact force control – the key to safe zero-fluoroscopy catheter ablation of atrioventricular nodal reentrant tachycardiaPublikationsverlauf
eingereicht: 9.7.2011
akzeptiert: 14.9.2011
Publikationsdatum:
20. September 2011 (online)

Zusammenfassung
Hintergrund: Die AV-Knoten-Reentrytachykardie (AVNRT) ist eine häufige supraventrikuläre Herzrhythmusstörung bei Kindern, Jugendlichen und jungen Erwachsenen. Die konventionelle Katheterablation ermöglicht praktisch immer eine endgültige Heilung, ist jedoch mit einer Röntgenstrahlen-Exposition und einem damit verbundenen Strahlenrisiko für Patient und Personal verbunden. Wir beschreiben eine sichere und einfache Technik für eine vollständig durchleuchtungsfreie Katheterablation.
Patienten und Methodik: Bei 12 Patienten mit AVNRT (medianes Alter 20 Jahre; 11–75 Jahre) wurde eine durchleuchtungsfreie Katheterablation angestrebt. Die Visualisierung kardiovaskulärer Strukturen erfolgte unter Zuhilfenahme eines 7F-Ablationskatheters mit integriertem Anpresskraftsensor und eines elektroanatomischen nicht-fluoroskopischen Navigationsystems.
Ergebnisse: Bei allen Patienten gelang eine erfolgreiche, komplikationslose und vollständig durchleuchtungsfreie Katheterablation der AVNRT. Im Nachbeobachtungszeitraum von im Median 6,2 Monaten (2,7–12,8 Monate) traten keine Tachykardie-Rezidive auf.
Folgerung: Die Verwendung eines Ablationskatheters mit Anpresskraftmessung in Verbindung mit einem nicht-fluoroskopischen Navigationssystem erlaubt eine durchleuchtungsfreie Katheterablation der AVNRT. Diese Technik ist einfach und sicher, sodass sie in den meisten elektrophysiologischen Laboren verwendet werden könnte.
Abstract
Background: Atrioventricular nodal reentrant tachycardia (AVNRT) is a frequent supraventricular tachycardia in children and young adults. Despite favourable success rates of catheter ablation, conventional fluoroscopic catheter guidance is associated with risks of low-dose ionizing radiation for the patient and the personnel. Here we describe a technique for zero-fluoroscopy catheter ablation using contact force technology.
Patients and methods: Zero-fluoroscopy catheter ablation was attempted in 12 patients with AVNRT (median age 20 years; range 11-75 years). An ablation catheter with integrated contact force sensor and a nonfluoroscopic electroanatomical mapping system was used for visualization of cardiovascular structures. Mean contact forces during mapping and ablation were restricted to an upper limit of 50 g to avoid cardiovascular injuries.
Results: Zero-fluoroscopy catheter ablation was performed successfully and uneventfully in all patients. There were no arrhythmia recurrences during a median follow-up of 6.2 months (range 2.7-12.8).
Conclusion: Zero-fluoroscopy catheter ablation of AVNRT is possible and appears simple yet safe, when a nonfluoroscopic electroanatomical mapping system is used in combination with an ablation catheter with integrated contact force sensor. The presented technique could thus be easily employed in most electrophysiological laboratories.
Schlüsselwörter
Katheterablation - Strahlenrisiko - Anpresskraftkontrolle - AV-Knoten-Reentrytachykardie
Keywords
Catheter ablation - radiation risk - contact force control - atrioventricular nodal reentrant tachycardia
Literatur
- 1
Alvarez M, Tercedor L, Almansa I. et al .
Safety and feasibility of catheter ablation
for atrioventricular nodal re-entrant tachycardia without fluoroscopic
guidance.
Heart Rhythm.
2009;
6
1714-1720
MissingFormLabel
- 2
Berrington de Gonzales A, Darby S.
Risk of
cancer from diagnostic X-rays: estimates for the UK and 14 other
countries.
Lancet.
2004;
363
345-351
MissingFormLabel
- 3 Bundesamt für
Strahlenschutz .Umweltradioaktivität und Strahlenbelastung.
Jahresbericht 2009. Bonn: Bundesministerium für
Umwelt, Naturschutz und Reaktorsicherheit (BMU).
MissingFormLabel
- 4
Calkins H, Niklason L, Sousa J. et al .
Radiation exposure during radiofrequency
catheter ablation of accessory atrioventricular connections.
Circulation.
1991;
84
2376-2382
MissingFormLabel
- 5
Calkins H, Yong P, Miller J M. et al .
Catheter ablation of accessory pathways, atrioventricular
nodal reentrant tachycardia, and the atrioventricular junction:
final results of a prospective, multicenter clinical trial. The
Atakr Multicenter Investigators Group.
Circulation.
1999;
99
262-270
MissingFormLabel
- 6
Casella M, Pelargonio G, Dello Russo A. et al .
„Near-zero” fluoroscopic
exposure in supraventricular arrhythmia ablation using the EnSite
NavX mapping system: personal experience and review of the literature.
J Interv Card Electrophysiol.
2011;
31
109-118
MissingFormLabel
- 7
Chistiakov D A, Voronova N V, Chistiakov P A.
Genetic variations in DNA repair genes,
radiosensitivity to cancer and susceptibility to acute tissue reactions in
radiotherapy-treated cancer patients.
Acta Oncol.
2008;
47
809-824
MissingFormLabel
- 8
Clark J, Bockoven J R, Lane J. et al .
Use of three-dimensional catheter guidance
and trans-esophageal echocardiography to eliminate fluoroscopy in
catheter ablation of left-sided accessory pathways.
Pacing
Clin Electrophysiol.
2008;
31
283-289
MissingFormLabel
- 9
Clay M A, Campbell R M, Strieper M. et al .
Long-term risk of fatal malignancy following
pediatric radiofrequency ablation.
Am J Cardiol.
2008;
102
913-915
MissingFormLabel
- 10
Drago F, Silvetti M S, Di Pino A. et al .
Exclusion of fluoroscopy during ablation
treatment of right accessory pathway in children.
J Cardiovasc
Electrophysiol.
2002;
13
778-782
MissingFormLabel
- 11
Earley M J, Showkathali R, Alzetani M. et al .
Radiofrequency ablation of arrhythmias
guided by non-fluoroscopic catheter location: a prospective randomized
trial.
Eur Heart J.
2006;
27
1223-1229
MissingFormLabel
- 12
Ferguson J D, Helms A, Mangrum J M. et al .
Catheter ablation of atrial fibrillation
without fluoroscopy using intracardiac echocardiography and electroanatomic
mapping.
Circ Arrhythm Electrophysiol.
2009;
2
611-619
MissingFormLabel
- 13
Hindricks G, Willems S, Kautzner J. et al .
Effect of electroanatomically guided versus
conventional catheter ablation of typical atrial flutter on the fluoroscopy
time and resource use: a prospective randomized multicenter study.
J Cardiovasc Electrophysiol.
2009;
20
734-740
MissingFormLabel
- 14
Kerst G, Weig H -J, Weretka S. et al .
Contact Force Controlled Zero-Fluoroscopy
Catheter Ablation of Right-Sided and Left-Atrial Arrhythmias.
Cardiol Young.
2011;
21
S60
MissingFormLabel
- 15
Kidouchi T, Suzuki S, Furui S. et al .
Entrance Skin Dose during Radiofrequency
Catheter Ablation for Tachyarrhythmia: A Multicenter Study.
Pacing
Clin Electrophysiol.
2011;
34
563-570
MissingFormLabel
- 16
Kopelman H A, Prater S P, Tondato F. et al .
Slow pathway catheter ablation of atrioventricular
nodal re-entrant tachycardia guided by electroanatomical mapping:
a randomized comparison to the conventional approach.
Europace.
2003;
5
171-174
MissingFormLabel
- 17
Kovoor P, Ricciardello M, Collins L. et al .
Risk to patients from radiation associated
with radiofrequency ablation for supraventricular tachycardia.
Circulation.
1998;
98
1534-1540
MissingFormLabel
- 18
Lindsay B D, Eichling J O, Ambos H D. et al .
Radiation exposure to patients and
medical personnel during radiofrequency catheter ablation for supraventricular
tachycardia.
Am J Cardiol.
1992;
70
218-223
MissingFormLabel
- 19
Mettler Jr F A, Bhargavan M, Faulkner K. et al .
Radiologic and nuclear medicine
studies in the United States and worldwide: frequency, radiation
dose, and comparison with other radiation sources – 1950 – 2007.
Radiology.
2009;
253
520-531
MissingFormLabel
- 20 National Research Council
(U.S.) .Committee on the Biological Effects of Ionizing
Radiations. Health effects of exposure to low levels of ionizing
radiation: BEIR V. Washington, D.C.: National Academy Press; 1990 xiii: 421
MissingFormLabel
- 21 National Research Council
(U.S.) .Committee to Assess Health Risks from Exposure
to Low Level of Ionizing Radiation. Health risks from exposure to
low levels of ionizing radiation: BEIR VII Phase 2,. Washington,
D.C: National Academy Press; 2006 xvi: 406
MissingFormLabel
- 22
Papagiannis J, Tsoutsinos A, Kirvassilis G. et al .
Nonfluoroscopic catheter navigation for
radiofrequency catheter ablation of supraventricular tachycardia
in children.
Pacing Clin Electrophysiol.
2006;
29
971-978
MissingFormLabel
- 23
Perisinakis K, Damilakis J, Theocharopoulos N. et al .
Accurate assessment of patient effective
radiation dose and associated detriment risk from radiofrequency
catheter ablation procedures.
Circulation.
2001;
104
58-62
MissingFormLabel
- 24
Reddy V Y, Neuzil P, Kautzner J. et al .
Low Catheter-Tissue Contact Force Results
in Late PV Reconnection – Initial results from EFFICAS
I.
Heart Rhythm.
2011;
8
AB 12-1
MissingFormLabel
- 25 Röntgenverordnung
in der Fassung der Bekanntmachung vom 30. April 2003. Bundesgesetzblatt,. Bonn: Bundesministerium für Umwelt, Naturschutz und
Reaktorsicherheit. 604-635
MissingFormLabel
- 26
Rosenthal L S, Mahesh M, Beck T J. et al .
Predictors of fluoroscopy time and estimated
radiation exposure during radiofrequency catheter ablation procedures.
Am J Cardiol.
1998;
82
451-458
MissingFormLabel
- 27
Shah D, Schmidt B, Arentz T. et
al .
Catheter contact force during human right and Left
atrial mapping in humans.
Heart Rhythm.
2009;
6
PO04-25
MissingFormLabel
- 28
Smith G, Clark J M.
Elimination of fluoroscopy
use in a pediatric electrophysiology laboratory utilizing three-dimensional
mapping.
Pacing Clin Electrophysiol.
2007;
30
510-518
MissingFormLabel
- 29
Theocharopoulos N, Damilakis J, Perisinakis K. et al .
Occupational exposure in the electrophysiology
laboratory: quantifying and minimizing radiation burden.
Br
J Radiol.
2006;
79
644-651
MissingFormLabel
- 30
Tucker K J, Curtis A B, Murphy J. et al .
Transesophageal echocardiographic guidance
of transseptal left heart catheterization during radiofrequency ablation
of left-sided accessory pathways in humans.
Pacing Clin
Electrophysiol.
1996;
19
272-281
MissingFormLabel
- 31
Tuzcu V.
A nonfluoroscopic approach for electrophysiology and catheter ablation
procedures using a three-dimensional navigation system.
Pacing Clin
Electrophysiol.
2007;
30
519-525
MissingFormLabel
- 32
Vano E, Kleiman N J, Duran A. et al .
Radiation cataract risk in interventional cardiology
personnel.
Radiat Res.
2010;
174
490-495
MissingFormLabel
- 33
Zrenner B, Dong J, Schreieck J. et al .
Transvenous cryoablation versus radiofrequency
ablation of the slow pathway for the treatment of atrioventricular
nodal re-entrant tachycardia: a prospective randomized pilot study.
Eur Heart J.
2004;
25
2226-2231
MissingFormLabel
PD Dr. med. Jürgen Schreieck
Klinik für Innere Medizin III
Universitätsklinik
Tübingen
Otfried-Müller-Straße
10
72076 Tübingen
Telefon: 07071/29-80642
Fax: 07071/29-4550
eMail: juergen.schreieck@med.uni-tuebingen.de