RSS-Feed abonnieren
DOI: 10.1055/s-0031-1280519
© Georg Thieme Verlag KG Stuttgart · New York
Molekulargenetische Diagnostik bei Verdacht auf Maturity Onset Diabetes of the Young (MODY): Klinische Parameter zur Entscheidungshilfe
Clinical parameters for molecular testing of Maturity Onset Diabetes of the Young (MODY)Publikationsverlauf
eingereicht: 31.1.2011
akzeptiert: 4.5.2011
Publikationsdatum:
17. Mai 2011 (online)

Zusammenfassung
Hintergrund: Eine monogenetische Diabetesform wird im Kindes- und Jugendalter aufgrund der Variabilität der Klinik und der geringen Erfahrung der Diabetologen mit diesem Krankheitsbild oft nur zufällig diagnostiziert. Das Studienziel war, klinische Parameter zu evaluieren, die ein effizientes Screening ermöglichen.
Methoden: Patienten mit folgenden Parametern wurden molekulargenetisch untersucht: kein Nachweis diabetesspezifischer Antikörper bei Manifestation, positive Familienanamnese für Diabetes und niedriger Insulinbedarf (≤ 0,5 IE/kg/d) ein Jahr nach Therapiebeginn. Die drei häufigsten Gene für MODY wurden sequenziert: HNF-4alpha (MODY 1), Glukokinase (MODY 2), HNF1-alpha/TCF1 (MODY 3), sowie einmalig HNF-1beta/TCF2-Region (MODY 5). Bei 39 von 292 Patienten unter Insulintherapie konnten bei Manifestation keine Antikörper nachgewiesen werden, 8 (20,5 %) erfüllten die weiteren Kriterien.
Ergebnisse: Bei 5 Patienten (63 %) war der genetische Befund positiv (2 ¥ MODY 2, 2 ¥ MODY 3, 1 ¥ MODY 5). Bei Manifestation betrug das Alter im Mittel 10,6 ± 5,3 Jahre (2,6 – 15), das mittlere HbA1c 8,4 ± 3,1 % (6,5 – 13,9). Die Diabetesdauer bis zum Zeitpunkt der Diagnose MODY betrug 3,3 ± 3,6 Jahre (0,8 – 9,6), der mittlere Insulinbedarf 0,44 ± 0,17 IE/kg/d (0,2 – 0,6). Patienten mit MODY 3 erhielten Repaglinid, bei MODY 2 wurde empfohlen, die Insulinbehandlung einzustellen.
Schlussfolgerung: Bei Patienten ohne Antikörper bei Manifestation, mit positiver Familienanamnese für Diabetes und niedrigem Insulinbedarf ist eine molekulargenetische Diagnostik auf MODY indiziert. Eine erhöhte Sensibilisierung und bessere Beobachtung der klinischen Parameter ermöglicht eine frühe molekulargenetische Untersuchung und Diagnose sowie eine adäquate Therapie.
Abstract
Background: Monogenic forms of diabetes are often diagnosed by chance, due to the variety of clinical presentation and limited experience of the diabetologists with this kind of diabetes. Aim of this study was to evaluate clinical parameters for an efficient screening.
Methods: Clinical parameters were: negative diabetes-specific antibodies at onset of diabetes, positive family history of diabetes, and low to moderate insulin requirements after one year of diabetes treatment. Molecular testing was performed through sequencing of the programming regions of HNF-4alpha (MODY 1), glucokinase (MODY 2) and HNF-1alpha/TCF1 (MODY 3) and in one patient the HNF-1beta/TCF2 region (MODY 5). 39 of 292 patients treated with insulin were negative for GADA and IA2A, and 8 (20.5 %) patients fulfilled both other criteria.
Results: Positive molecular results were found in five (63 %) patients (two with MODY 2, two with MODY 3, one with MODY 5). At diabetes onset, the mean age of the 5 patients with MODY was 10.6 ± 5.3 yrs (range 2.6 – 15 yrs), HbA1c was 8.4 ± 3.1 % (6.5 – 13.9 %), mean diabetes duration until diagnosis of MODY was 3.3 ± 3.6 yrs (0.8 – 9.6 yrs) with insulin requirements of 0.44 ± 0.17 U/kg/d (0.2 – 0.6 U/kg/d). Patients with MODY 3 were changed from insulin to repaglinide, those with MODY 2 were recommended discontinuing insulin treatment.
Conclusion: In patients with negative diabetes-specific antibodies at onset of diabetes, with a positive family history, and low to moderate insulin needs a genetic screening for MODY is indicated. Watchful consideration of these clinical parameters may lead to an early genetic testing, and to an adequate treatment.
Schlüsselwörter
MODY - Klinische Parameter - Molekulargenetische Untersuchung
Keywords
MODY - clinical parameters - molecular testing
Literatur
- 1
AMERICAN DIABETES
ASSOCIATION .
Type 2 diabetes in children and adolescents.
Diabetes Care.
2000;
23
381-389
MissingFormLabel
- 2
AMERICAN DIABETES ASSOCIATION .
Diagnosis and classification of diabetes mellitus.
Diabetes
Care.
2009;
32
S62-S67
MissingFormLabel
- 3
Bellanné-Chantelot C, Clauin S, Chauveau D. et al .
Large genomic rearrangements
in the hepatocyte nuclear factor-1beta (TCF2) gene are the most
frequent cause of maturity-onset diabetes of the young type 5.
Diabetes.
2005;
54
3126-3132
MissingFormLabel
- 4
Bingham C, Hattersley A T.
Renal cysts
and diabetes syndrome resulting from mutations in hepatocyte nuclear
factor-1ß.
Nephrol Dial Transplant.
2004;
19
2703-2708
MissingFormLabel
- 5
Bjorkhaug L, Sagen J V, Thorsby P. et al .
Hepatocyte nuclear factor-1 alpha gene
mutations and diabetes in Norway.
J Clin Endocrinol Metab.
2003;
88
920-931
MissingFormLabel
- 6
Bloomgarden Z T.
Type 2 diabetes in the young: the evolving epidemic.
Diabetes
Care.
2004;
27
998-1010
MissingFormLabel
- 7
Craig M E, Hattersley A, Donaghue K.
International Society for Pediatric and adolescent Diabetes.
ISPAD Clinical Practice Consensus Guidelines 2006 – 2007.
Definition, epidemiology and classification.
Pediatr Diabetes.
2006;
7
343-351
MissingFormLabel
- 8
Edghill E L, Bingham C, Ellard S, Hattersley A T.
Mutations
in hepatocyte nuclear factor -1beta and their related phenotypes.
J Med Genet.
2006;
43
84-90
MissingFormLabel
- 9
Ellard S, Bellanné-Chantelot C, Hattersley A T. European Molecular Genetics Quality
Network (EmQN) Mody group .
Best practice guidelines
for the molecular genetic diagnosis of maturity-onset diabetes of
the young.
Diabetologia.
2008;
51
546-553
MissingFormLabel
- 10
EURODIAB ACE Study Group .
Variation and trends in incidences of childhood diabetes in
Europe.
Lancet.
2000;
355
873-866
MissingFormLabel
- 11
Fajans S S, Graeme I B, Polonsky K S.
Molecular Mechanisms and clinical pathophysiology
of maturity onset diabetes of the young.
N Engl J Med.
2001;
345
971-980
MissingFormLabel
- 12
Harjutsalo V, Sjöberg L, Tuomilehto J.
Time trends in the incidence of type 1 diabetes in Finnish children:
a cohort study.
Lancet.
2008;
371
1777-1782
MissingFormLabel
- 13
Harries L W, Ellard S, Jones R W. et al .
Abnormal splicing of hepatocyte nueclear
factor-1beta in the renal cysts and diabetes syndrome.
Diabetologia.
2004;
47
937-942
MissingFormLabel
- 14
Hattersley A, Bruining J, Shield J, Njolstad P, Donaghue K.
International society for Pediatric and Adolescent Diabetes.
ISPAD Clinical Practice Consensus Guidelines 2006 – 2007.
The diagnosis and management of monogenic diabetes in children.
Pediatr Diabetes.
2006;
7
352-360
MissingFormLabel
- 15
Horikawa Y, Iwasaki N, Hara M. et al .
Mutation in hepatocyte nuclear factor-1 beta
gene (TCF2) associated with MODY.
Nature Genetics.
1997;
17
384-385
MissingFormLabel
- 16
Meissner T, Marquard J, Schober E.
Maturity-onset diabetes of the young (MODY).
Der Diabetologe.
2010;
6
219-230
MissingFormLabel
- 17
Murphy R, Ellard S, Hattersley A T.
Clinical implications of a molecular genetic classification
of monogenic ß-cell diabetes.
Nat Clin Pract
Endocrinol Metab.
2008;
4
200-213
MissingFormLabel
- 18
Onkamo P, Vaananen S, Karvonen M, Tuomilehto J.
Worldwide increase
in incidence of type 1 diabetes- the analysis of the data on published
incidence trends.
Diabetologia.
1999;
42
1395-1403
MissingFormLabel
- 19
Pearson E R, Starkey B J, Powell R J, Gribble F M, Clark P M, Hattersley A T.
Genetic cause of hyperglycaemia and response to treatment in
diabetes.
Lancet.
2003;
362
1275-1281
MissingFormLabel
- 20
Raile K, Klopocki E, Holder M. et
al .
Expanded clinical spectrum in hepatocyte nuclear
factor 1b-maturity-onset diabetes of the young.
A J Clin
Endocinol Metab.
2009;
94
2658-2664
MissingFormLabel
- 21
Sabbah E, Savola K, Ebeling T. et
al .
Genetic, autoimmune, and clinical characteristics
of childhood-and adult-onset type1 diabetes.
Diabetes
Care.
2000;
23
1326-1332
MissingFormLabel
- 22
Schnyder S, Mullis P E, Ellard S, Hattersley A T, Flück C E.
Genetic Testing for glukokinase
mutations in clinically selected patients with MODY: a worthwile investment.
Swiss Med Wkly.
2005;
135
352-356
MissingFormLabel
- 23
Shepherd M, Pearson E R, Houghton J. et al .
No deterioation in glycemic control in
HNF1 alpha maturity-onset diabetes of the young following transfer
from longterm insulin to sulphonylureas.
Diabetes Care.
2003;
26
3191-3192
MissingFormLabel
- 24
Shepherd M, Shields B, Ellard S. et al .
A genetic diagnosis of HNF1A diabetes alters
treatment and improves glycaemic control in the majority of insulin-treated
patients.
Diabet Med.
2009;
26
437-441
MissingFormLabel
- 25
Stoffel M, Froguel P, Takeda J. et al .
Human glucokinase gene: isolation, characterization,
and identification of two missense mutations linked to early-onset
non-insulin-dependent (type 2) diabetes mellitus.
Proc
Natl Acad Sci USA.
1992;
89
7698-7702
MissingFormLabel
- 26
Stride A, Hattersley A T.
Different genes,
different diabetes: lessons from maturity-onset diabetes of the
young.
Ann Med.
2002;
34
207-216
MissingFormLabel
- 27
Velho G, Blanché H, Vaxillaire M. et al .
Identification of 14 new glucokinase mutations
and description of the clinical profile of 42 MODY-2 families.
Diabetologia.
1997;
40
217-224
MissingFormLabel
- 28
Verge C F, Stenger D, Bonifacio E. et al .
Combined use of autoantibodies (IA-2 autoantibody,
GAD autoantibody, insulin autoantibody, cytoplasmic islet cell.
Diabetes.
1998;
47
1857-1866
MissingFormLabel
Dr. Nicolin Datz
Kinderkrankenhaus auf der Bult
Janusz-Korczak-Allee
12
30173 Hannover
Deutschland
Telefon: 0511/8115-3330
Fax: 0511/8115-3334
eMail: datz@hka.de