RSS-Feed abonnieren
DOI: 10.1055/s-0031-1274539
© Georg Thieme Verlag KG Stuttgart · New York
Die Rolle des Gehirns in der Regulation des Stoffwechsels
Central nervous system control of energy homeostasisPublikationsverlauf
eingereicht: 16.11.2010
akzeptiert: 27.1.2011
Publikationsdatum:
08. März 2011 (online)

Zusammenfassung
Das Gehirn wird fortlaufend mit Informationen über die Verteilung und Menge der Energiereserven aus der Körperperipherie versorgt. Endokrine, autonome und kognitiv-hedonische Signale werden zentral integriert und rufen über anabole und katabole Signalwege Effekte auf den Gesamtorganismus hervor. Die Hormone Insulin und Leptin sind bedeutende Adipositassignale, d. h. ihre Konzentrationen im Blut spiegeln die Menge an Körperfett wieder und bilden einen negativen Feedbackmechanismus zwischen Körperperipherie und dem zentralen Nervensystem. Der hypothalamische Nucleus arcuatus ist die wichtigste zentralnervöse Struktur, die diese Informationen verarbeitet. Weiterhin ist das ZNS in der Lage, direkt die Konzentrationsänderungen bestimmter Nährstoffe zu messen und auf diese zu reagieren. Für die Entwicklung effektiver Therapien von Störungen der Energiebalance ist die weitere Aufklärung dieser neurobiologischen Vorgänge von entscheidender Bedeutung. Diese Arbeit gibt einen Überblick über die zentralnervöse Stoffwechselregulation und die ihr zugrunde liegenden molekularen Mechanismen.
Abstract
The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms.
Schlüsselwörter
Leptin - Insulin - Hypothalamus - Nucleus arcuatus - Energiehomöostase
Keywords
leptin - insulin - hypothalamus - arcuate nucleus - energy homeostasis
Literatur
- 1
Anand B K, Brobeck J R.
Hypothalamic
control of food intake in rats and cats.
Yale J Biol Med.
1951;
24
123-140
MissingFormLabel
- 2
Banks W A.
Blood-brain barrier and energy balance.
Obesity (Silver Spring).
2006;
14 Suppl 5
234S-237S
MissingFormLabel
- 3
Benoit S C, Air E L, Coolen L M. et al .
The catabolic action of
insulin in the brain is mediated by melanocortins.
J Neurosci.
2002;
22
9048-9052
MissingFormLabel
- 4 Bernard C. Leçons de physiologie experimentale appliqués á là medecine. Paris: Baillère et Fils; 1854
MissingFormLabel
- 5
Bruning J C, Gautam D, Burks D J. et al .
Role of brain insulin receptor in control
of body weight and reproduction.
Science.
2000;
289
2122-2125
MissingFormLabel
- 6
Clark J T, Kalra P S, Crowley W R, Kalra S P.
Neuropeptide
Y and human pancreatic polypeptide stimulate feeding behavior in
rats.
Endocrinology.
1984;
115
427-429
MissingFormLabel
- 7
Cone R D.
Anatomy and regulation of the central melanocortin system.
Nat Neurosci.
2005;
8
571-578
MissingFormLabel
- 8
Cone R D.
The central melanocortin system and energy homeostasis.
Trends
Endocrinol Metab.
1999;
10
211-216
MissingFormLabel
- 9
Farooqi I S, Jebb S A, Langmack G. et al .
Effects of recombinant leptin therapy in
a child with congenital leptin deficiency.
N Engl J Med.
1999;
341
879-884
MissingFormLabel
- 10
Frederich R C, Hamann A, Anderson S, Lollmann B, Lowell B B, Flier J S.
Leptin levels
reflect body lipid content in mice: evidence for diet-induced resistance
to leptin action.
Nat Med.
1995;
1
1311-1314
MissingFormLabel
- 11
Halaas J L, Gajiwala K S, Maffei M. et al .
Weight-reducing effects of the plasma protein
encoded by the obese gene.
Science.
1995;
269
543-546
MissingFormLabel
- 12
Hallschmid M, Benedict C, Schultes B, Fehm H L, Born J, Kern W.
Intranasal insulin reduces
body fat in men but not in women.
Diabetes.
2004;
53
3024-3029
MissingFormLabel
- 13
Hardie D G.
Minireview: the AMP-activated protein kinase cascade: the key
sensor of cellular energy status.
Endocrinology.
2003;
144
5179-5183
MissingFormLabel
- 14
Haslam D W, James W P.
Obesity.
Lancet.
2005;
366
1197-1209
MissingFormLabel
- 15
Havrankova J, Roth J, Brownstein M.
Insulin receptors are widely distributed in the central nervous
system of the rat.
Nature.
1978;
272
827-829
MissingFormLabel
- 16
Haynes W G, Morgan D A, Walsh S A, Mark A L, Sivitz W I.
Receptor-mediated regional sympathetic
nerve activation by leptin.
J Clin Invest.
1997;
100
270-278
MissingFormLabel
- 17
Heymsfield S B, Greenberg A S, Fujioka K. et al .
Recombinant leptin for weight loss in obese
and lean adults: a randomized, controlled, dose-escalation trial.
JAMA.
1999;
282
1568-1575
MissingFormLabel
- 18
Huszar D, Lynch C A, Fairchild-Huntress V. et al .
Targeted disruption of the
melanocortin-4 receptor results in obesity in mice.
Cell.
1997;
88
131-141
MissingFormLabel
- 19
Kennedy G C.
The role of depot fat in the hypothalamic control of food intake
in the rat.
Proc R Soc Lond B Biol Sci.
1953;
140
578-596
MissingFormLabel
- 20
Loftus T M, Jaworsky D E, Frehywot G L. et al .
Reduced food intake and body
weight in mice treated with fatty acid synthase inhibitors.
Science.
2000;
288
2379-2381
MissingFormLabel
- 21
Maffei M, Halaas J, Ravussin E. et al .
Leptin levels in human and rodent: measurement
of plasma leptin and ob RNA in obese and weight-reduced subjects.
Nat Med.
1995;
1
1155-1161
MissingFormLabel
- 22
Mayer J.
Regulation of energy intake and the body weight: the glucostatic
theory and the lipostatic hypothesis.
Ann N Y Acad Sci.
1955;
63
15-43
MissingFormLabel
- 23
Minokoshi Y, Alquier T, Furukawa N. et al .
AMP-kinase regulates food intake by responding
to hormonal and nutrient signals in the hypothalamus.
Nature.
2004;
428
569-574
MissingFormLabel
- 24
Montague C T, Farooqi I S, Whitehead J P. et al .
Congenital leptin deficiency
is associated with severe early-onset obesity in humans.
Nature.
1997;
387
903-908
MissingFormLabel
- 25
Moran T H, Kinzig K P.
Gastrointestinal
satiety signals II. Cholecystokinin.
Am J Physiol Gastrointest
Liver Physiol.
2004;
286
G183-G188
MissingFormLabel
- 26
Obici S, Feng Z, Arduini A, Conti R, Rossetti L.
Inhibition
of hypothalamic carnitine palmitoyltransferase-1 decreases food
intake and glucose production.
Nat Med.
2003;
9
756-761
MissingFormLabel
- 27
Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L.
Central administration of oleic acid inhibits
glucose production and food intake.
Diabetes.
2002;
51
271-275
MissingFormLabel
- 28
Obici S, Zhang B B, Karkanias G, Rossetti L.
Hypothalamic insulin
signaling is required for inhibition of glucose production.
Nat
Med.
2002;
8
1376-1382
MissingFormLabel
- 29
Oomura Y, Ono T, OOYAMA H, Wayner M J.
Glucose and osmosensitive neurones
of the rat hypothalamus.
Nature.
1969;
222
282-284
MissingFormLabel
- 30
Polonsky K S, Given B D, CE.
Twenty-four-hour profiles and pulsatile patterns of insulin
secretion in normal and obese subjects.
J Clin Invest.
1988;
81
442-448
MissingFormLabel
- 31
Rahmouni K, Haynes W G, Morgan D A, Mark A L.
Role
of melanocortin-4 receptors in mediating renal sympathoactivation
to leptin and insulin.
J Neurosci.
2003;
23
5998-6004
MissingFormLabel
- 32
Sayk F, Heutling D, Dodt C. et
al .
Sympathetic function in human carriers of melanocortin-4
receptor gene mutations.
J Clin Endocrinol Metab.
2010;
95
1998-2002
MissingFormLabel
- 33
Schwartz M W, Porte Jr D.
Diabetes, obesity,
and the brain.
Science.
2005;
307
375-379
MissingFormLabel
- 34
Schwartz M W, Woods S C, Porte Jr D, Seeley R J, Baskin D G.
Central nervous system control
of food intake.
Nature.
2000;
404
661-671
MissingFormLabel
- 35
Seeley R J, DG, Campfield L A. et al .
Intraventricular leptin reduces food intake
and body weight of lean rats but not obese Zucker rats.
Horm Metab
Res.
1996;
28
664-668
MissingFormLabel
- 36
Woods S C, D’Alessio D A.
Central
control of body weight and appetite.
J Clin Endocrinol
Metab.
2008;
93
S37-S50
MissingFormLabel
- 37
Woods S C, Lotter E C, McKay L D, Porte Jr D.
Chronic
intracerebroventricular infusion of insulin reduces food intake
and body weight of baboons.
Nature.
1979;
282
503-505
MissingFormLabel
- 38
Zarjevski N, Cusin I, Vettor R, Rohner-Jeanrenaud F, Jeanrenaud B.
Chronic intracerebroventricular neuropeptide-Y administration
to normal rats mimics hormonal and metabolic changes of obesity.
Endocrinology.
1993;
133
1753-1758
MissingFormLabel
- 39
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M.
Positional cloning
of the mouse obese gene and its human homologue.
Nature.
1994;
372
425-432
MissingFormLabel
Felix Machleidt
Medizinische
Klinik 1
Universitätsklinikum Schleswig-Holstein,
Campus Lübeck
Ratzeburger Allee 160
23538
Lübeck
Telefon: 0451/500-5786
Fax: 0451/500-3640
eMail: felix.machleidt@uk-sh.de