Subscribe to RSS
DOI: 10.1055/s-0030-1260780
Exo-Selective Asymmetric Inverse-Electron Demand Hetero-Diels-Alder Reaction Catalyzed by Cu(II)-Hydroxy Oxazoline Ligands
Publication History
Publication Date:
10 June 2011 (online)

Abstract
Cu(II) complexes of hydroxy oxazolines derived from (+)-(S)-ketopinic acid catalyze the asymmetric hetero-Diels-Alder cycloaddition of enol ethers and β,γ-unsaturated α-keto esters. The reaction takes place with unprecedented exo selectivity providing 2,4-trans-disubstituted chiral 2,3-dihydropyrans with up to 88% ee.
Key words
asymmetric catalysis - cycloaddition - copper - acetals - heterocycles
- 1
Gunatilaka AAL. J. Nat. Prod. 2006, 69: 509 - For reviews, see:
-
2a
Yeung K.-S.Paterson I. Chem. Rev. 2005, 105: 4237 -
2b
Kang EJ.Lee E. Chem. Rev. 2005, 105: 4348 -
2c
Inoue M. Chem. Rev. 2005, 105: 4379 -
2d
Aho JE.Pihko PM.Rissa TK. Chem. Rev. 2005, 105: 4406 -
2e
Nakata T. Chem. Rev. 2005, 105: 4314 -
2f
Goldring WPD.Pattenden G. Acc. Chem. Res. 2006, 39: 354 -
2g
Yet L. Chem. Rev. 2003, 103: 4283 -
2h
.
Nasreen A.Akhtar F.Shekhani MS.Clardy J.Parvez M.Choudhary MI. J. Nat. Prod. 1997, 60: 472 -
2i
Brimble MA.Prabaharan H. Tetrahedron 1998, 54: 2113 -
2j
Conway JC.Quayle P.Regan AC.Urch CJ. Tetrahedron 2005, 61: 11910 -
2k
Tang Y.Oppenheimer J.Song Z.You L.Zhang X.Hsung RP. Tetrahedron 2006, 62: 10785 -
2l
Goddard-Boger ED.Ghisalberti EL.Stick RV. Eur. J. Org. Chem. 2007, 3925 -
2m
Kumar S.Malachowski WP.DuHadaway JB.LaLonde JM.Carroll PJ.Jaller D.Metz R.Prendergast GC.Muller AJ. J. Med. Chem. 2008, 51: 1706 -
2n
Yoo NH.Jang DS.Yoo JL.Lee YM.Kim YS.Cho J.-H.Kim JS. J. Nat. Prod. 2008, 71: 713 - 3
Tietze LF.Kettschau G. Top. Curr. Chem. 1997, 189: 12120 -
4a
Jørgensen KA. in Cycloaddition Reactions in Organic SynthesisKobayashi S.Jørgensen KA. Wiley; New York: 2002. -
4b
Jørgensen KA. Eur. J. Org. Chem. 2004, 2093 -
4c
Lin L.Liu X.Feng X. Synlett 2007, 2147 -
5a
Tietze LF.Saling P. Synlett 1992, 281 -
5b
Tietze LF.Saling P. Chirality 1993, 5: 329 -
6a
Wada E.Yasuoka H.Kanemasa S. Chem. Lett. 1994, 23: 1637 -
6b
Wada E.Pei W.Yasuoka H.Chin U.Kanemasa S. Tetrahedron 1996, 52: 1205 -
7a
Evans DA.Johnson JS. J. Am. Chem. Soc. 1998, 120: 4895 -
7b
Evans DA.Olhava EJ.Johnson JS. Angew. Chem. Int. Ed. 1998, 37: 3372 -
7c
Evans DA.Johnson JS.Burgy CS.Campos KR. Tetrahedron Lett. 1999, 40: 2879 -
7d
Evans DA.Johnson JS.Olhava EJ. J. Am. Chem. Soc. 2000, 122: 1635 -
8a
Thorhauge J.Johannsen M.Jørgensen KA. Angew. Chem. Int. Ed. 1998, 37: 2404 -
8b
Audrian H.Thorhauge J.Hazell RG.Jørgensen KA. J. Org. Chem. 2000, 65: 4487 -
8c
Zhuang W.Thorhauge J.Jørgensen KA. Chem. Commun. 2000, 459 -
8d
Audrian H.Jørgensen KA. J. Am. Chem. Soc. 2000, 122: 11543 - The HDA reaction has also been carried out with immobilized BOX ligands, see:
-
9a
Shin YJ.Yeom C.-E.Kim MJ.Kim BM. Synlett 2008, 89 -
9b
O’Leary P.Krosveld NP.De Jong KP.van Koten G.Klein Gebbink RJM. Tetrahedron Lett. 2004, 45: 3177 -
9c
Wan Y.McMorn P.Hancock FE.Hutchings GJ. Catal. Lett. 2003, 91: 145 -
9d
Kurosu M.Porter JR.Foley MA. Tetrahedron Lett. 2004, 45: 145 - 10
Barroso S.Blay G.Muñoz MC.Pedro JR. Adv. Synth. Catal. 2009, 351: 107 - 11 Selective endo or exo approach in the HDA reaction between vinyl
ethers and a,b-unsaturated acyl esters, has been accomplished by
using Eu or Sn Lewis acids, in a non-asymmetric reaction, see:
Martel A.Leconte S.Dujardin G.Brown E.Maisonneuve V.Retoux R. Eur. J. Org. Chem. 2002, 514 - 12
Barroso S.Blay G.Cardona L.Pedro JR. Synlett 2007, 2659 -
13a
Barroso S.Blay G.Pedro JR. Org. Lett. 2007, 9: 1983 -
13b
Barroso S.Blay G.Al-Midfa L.Muñoz MC.Pedro JR. J. Org. Chem. 2008, 73: 6389 -
13c
Barroso S.Blay G.Muñoz MC.Pedro JR. Org. Lett. 2011, 13: 402 - 14
Sakakura A.Kondo R.Ishihara K. Org. Lett. 2005, 7: 1971 - 15
Yamada K.Maekawa M.Akindele T.Nakano M.Yamamoto Y.Tomioka K. J. Org. Chem. 2008, 73: 9535
References and Notes
We have not determined the absolute stereochemistry of the minor endo-adducts 10. For a description of these adducts see refs. 5 and 6.
17
Synthesis of Ligand
5: A solution of (S)-(+)-ketopinic
acid (1; 1.0 g, 5.5 mmol) in SOCl2 (4.5 mL) was refluxed
for 2 h and the excess SOCl2 was removed under reduced
pressure. The residue dissolved in CH2Cl2 (3.8
mL) was added drop-wise to a solution of (R)-2-amino-2-phenylethanol
(0.76 g, 5.5 mmol) and Et3N (0.75 mL, 5.5 mmol) in CH2Cl2 (3
mL) at 0 ˚C under nitrogen. After 1 h, the mixture was
diluted with EtOAc (150 mL), washed with 2 M HCl (2 × 30
mL), sat. aq NaHCO3 (2 × 30 mL) and brine (30
mL), dried
over MgSO4 and concentrated. The
crude product was crystallized from hexane-CH2Cl2 to
give 1.49 g (90%) of hydroxy amide; mp 140-142 ˚C; [α]D
²5 -6.2
(c = 0.78, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 8.37 (d, J = 6.4 Hz, 1 H), 7.32 (m, 5
H), 5.15 (td, J = 5.4, 7.0 Hz,
1 H), 3.87 (m, 2 H), 2.81 (s, 1 H), 2.58 (m, 1 H), 2.51 (dd, J = 4.7, 8.5 Hz, 1 H), 2.17
(m, 1 H), 2.09 (t, J = 4.4 Hz,
1 H), 2.00 (d, J = 18.8 Hz,
1 H), 1.69 (ddd, J = 4.6, 9.2,
13.8 Hz, 1 H), 1.45 (m, 1 H), 1.22 (s, 3 H), 0.94 (s, 3 H). ¹³C
NMR (75.5 MHz, CDCl3): δ = 217.3 (s),
169.8 (s), 139.0 (s), 128.7 (d), 127.6 (d), 126.5 (d), 67.1 (t),
64.5 (s), 55.7 (d), 50.3 (s), 43.6 (t), 43.2 (d), 28.4 (t), 27.7
(t), 20.8 (q), 20.3 (q). MS (FAB):
m/z (%) = 302
(100) [M+ + 1], 154
(71), 137 (58). HRMS:
m/z calcd
for C18H24NO3: 302.1756; found:
302.1754.
Mesyl chloride (6.75 mmol) was added dropwise
to a solution of hydroxy amide (1.03 g, 3.4 mmol), Et3N
(5.8 mL) and diisopropylethylamine (1.2 mL) in CH2Cl2 (17
mL) under nitrogen at 0 ˚C. The reaction was stirred overnight. After
this time, the reaction mixture was diluted with EtOAc (200 mL),
washed with H2O (2 × 25 mL) and brine (25 mL), dried
over MgSO4, concentrated under reduced pressure and the
product was purified by flash chromatography eluting with hexane-EtOAc
to give 0.93 g (96%) of keto-oxazoline; mp 122-125 ˚C; [α]D
²5 +88.5
(c = 0.73, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 7.29 (m,
5 H), 5.23 (dd, J = 8.0, 10.2 Hz,
1 H), 4.67 (dd, J = 8.5, 10.1
Hz, 1 H), 4.07 (t, J = 8.1 Hz, 1
H), 2.49-2.64 (m, 2 H), 2.16 (t, J = 4.4
Hz, 1 H), 2.07 (m, 1 H), 1.98 (d, J = 18.3
Hz, 1 H), 1.84 (ddd, J = 4.7,
9.2, 13.9 Hz, 1 H), 1.43 (ddd, J = 4.0,
9.2, 12.9 Hz, 1 H), 1.19 (s, 3 H), 1.13 (s, 3 H). ¹³C
NMR (75.5 MHz, CDCl3): δ = 211.9 (s), 165.4
(s), 142.4 (s), 128.6 (d), 127.4 (d), 126.5 (d), 74.8 (t), 69.3
(d), 63.0 (s), 49.4 (s), 44.4 (d), 43.8 (t), 27.3 (t), 26.6 (t), 21.4
(q), 19.8 (q). MS (EI): m/z (%) = 283
(73) [M+], 268 (26), 255 (99),
240 (60), 214 (28), 210 (19), 165 (24), 120 (27), 104 (60), 91 (100),
77 (67), 67 (81). HRMS: m/z calcd for
C18H21NO2: 283.1572; found: 283.1571.
A
solution of [LiAlH4˙2THF] complex
in toluene (1 M, 1.5 mL, 1.5 mmol) was added dropwise to a solution
of keto-oxazoline (0.47 g, 1.67 mmol) in toluene (17 mL) under nitrogen
at -40 ˚C. The reaction was stirred until the
starting material was consumed (TLC). The reaction mixture was then
diluted with EtOAc (150 mL), washed with brine (3 × 10
mL), dried over MgSO4, concentrated under reduced pressure
and the product was purified by flash chromato-graphy eluting with
hexane-EtOAc to give 295 mg (62%) of compound
5 and 71 mg (15%) of its C2-epimer. Compound 5: [α]D
²5 +14.3
(c = 1.02, CHCl3). ¹H
NMR (300 MHz, CDCl3): δ = 7.25 (m,
5 H), 5.53 (br s, 1 H), 5.20 (dd, J = 7.7, 10.1
Hz, 1 H), 4.53 (dd, J = 8.4,
10.2 Hz, 1 H), 4.06 (dd, J = 3.5,
7.8 Hz, 1 H), 4.00 (t, J = 8.1
Hz, 1 H), 2.20 (m, 1 H), 1.83-1.96 (m, 2 H), 1.70-1.80
(m, 2 H), 1.27 (m, 1 H), 1.22 (s, 3 H), 1.14 (m, 1 H), 1.06 (s,
3 H). ¹³C NMR (75.5 MHz, CDCl3): δ = 170.2
(s), 142.0 (s), 128.5 (d), 127.4 (d), 126.2 (d), 77.5 (d), 73.4
(t), 68.4 (d), 53.0 (s), 49.7 (s), 45.6 (d), 39.3 (t), 30.3 (t),
27.6 (t), 21.9 (q), 20.5 (q). MS (EI) m/z (%) = 285
(10) [M+], 270 (71), 257 (100),
242 (88), 216 (22), 202 (50), 174 (16), 151 (24), 120 (25), 104
(46), 91 (73), 77 (57). HRMS: m/z calcd
for C18H23NO2: 285.1729; found: 285.1718.
Experimental Procedure for the Enantioselective
HDA Reaction: Copper triflate (9.0 mg, 0.025 mmol) in a Schlenk tube
was dried at 90 ºC under vacuum for 1 h. The tube was filled
in with nitrogen and ligand 5 (7.1 mg,
0.025 mmol) was added followed by anhyd EtOAc (0.75 mL). The mixture
was stirred for 1 h and keto ester 8a (50
mg, 0.25 mmol) dissolved in EtOAc (0.4 mL) was added. After stirring
for 30 min, the solution was cooled at 0 ˚C and ethyl vinyl
ether (7a; 75 µL, 0.75 mmol) was
added. After 3 h, the reaction mixture was filtered through a short
pad of silica gel eluting with CH2Cl2 to give
61.4 mg (89%) of compound 9aa + 10aa (Table 1, entry 12). HPLC analysis
(Chiralpak IC, 2% isopropanol-98% hexane,
1.0 mL/min): (+)-(2S,4R)-9aa: tR = 12.2 min, (-)-(2R,4S)-9aa: tR = 17.0
min, 10aa (enantiomer 1): tR = 27.6 min, 10aa (enantiomer
2): tR = 33.6 min. A pure sample
of enantioenriched (+)-9aa was obtained
by flash column chromatography, eluting with hexane-CH2Cl2 (1:9); [α]D
²5 +136
(c = 1.0, CHCl3,
81% ee). ¹H NMR (300 MHz, CDCl3): δ = 7.16-7.29
(m, 5 H), 6.15 (dd, J = 1.8,
2.4 Hz, 1 H), 5.25 (t, J = 2.4
Hz, 1 H), 4.21 (q, J = 7.0 Hz,
2 H), 3.86 (dq, J = 9.9, 7.2
Hz, 1 H), 3.71 (ddd, J = 2.4,
6.3, 11.7 Hz, 1 H), 3.61 (dq, J = 9.9,
7.2 Hz, 1 H), 2.11 (dddd, J = 12.0,
6.3, 2.1, 1.8 Hz, 1 H), 1.76 (ddd, J = 12.0,
11.7, 2.4 Hz, 1 H), 1.25 (t, J = 7.0
Hz, 3 H), 1.18 (t,
J = 7.2
Hz, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 162.9
(s), 143.4 (s), 140.8 (s), 128.7 (d), 127.6 (d), 126.8 (d), 115.3
(d), 97.1 (d), 64.2 (t), 61.1 (t), 34.9 (t), 34.0 (d), 15.1 (q),
14.2 (q). MS (EI): m/z (%) = 276
(1.5) [M+], 230 (15), 203
(6), 157 (25), 131 (100). HRMS: m/z calcd
for C16H20O4: 276.1362; found:
276.1364. Minor diastereomer 10aa: ¹H
NMR (300 MHz, CDCl3): δ = 7.21-7.40
(m, 5 H), 6.13 (dd, J = 1.2,
3.0 Hz, 1 H), 5.15 (dd, J = 2.4,
8.1 Hz, 1 H), 4.26 (m, 2 H), 4.03 (dq, J = 9.6,
6.9 Hz, 1 H), 3.71 (ddd, J = 3.0,
6.9, 9.6 Hz, 1 H), 3.63 (dq, J = 9.6,
6.9 Hz, 1 H), 2.30 (dddd, J = 13.5,
6.9, 2.4, 1.2 Hz, 1 H), 1.96 (ddd, J = 13.5,
9.6, 8.1 Hz, 1 H), 1.31 (t, J = 7.2
Hz, 3 H), 1.23 (t, J = 6.9 Hz,
3 H).