Abstract
This account describes the development of a Diels-Alder-based
methodology towards highly functionalized dihydronaphthalenamines,
and their conversion into indoles through a modified Plieninger
procedure. Applications towards the total synthesis of indole-containing
natural products will be presented.
1 Introduction
2 Synthesis of Indoles via Diels-Alder Cycloadditions/Plieninger
Indolization
2.1 High Pressure Diels-Alder Cycloadditions of Quinone Imine
Ketals (QIKs)
2.2 Thermal Diels-Alder Cycloadditions of QIKs
2.3 Development of a Modified Plieninger Protocol
2.4 Diels-Alder Cycloadditions/Indolization
of p -Benzoquinone Monoimines
3 Applications to Natural Products Synthesis
3.1 Ergot Alkaloids: Chanoclavine I (Plieninger)
3.2 Rivularins (Maehr)
3.3 Polyalkylated Indoles: Herbindoles and Trikentrins (Kerr)
3.4 Tremorgenic Indole Terpenoids: Lolicine Western Hemisphere
(Kerr)
3.5 Antitumor Agents: Yatakemycin (Boger) and CC-1065 (Kraus,
Kerr)
3.6 Antimalarials: Decursivine (Kerr)
3.7 Carbazole Natural Products: The Clausamines and Eustifolines
(Kerr)
4 Summary and Outlook
Key words
cycloadditions - Diels-Alder reaction - indoles - natural products - total synthesis
References
For recent reviews on the synthesis
of indoles, see:
<A NAME="RA58911ST-1A">1a </A>
Gribble GW.
J. Chem. Soc., Perkin Trans. 1
2000,
1045
<A NAME="RA58911ST-1B">1b </A>
Cacchi S.
Fabrizi G.
Chem. Rev.
2005,
105:
2873
<A NAME="RA58911ST-1C">1c </A>
Humphrey GR.
Kuethe JT.
Chem.
Rev.
2006,
106:
2875
<A NAME="RA58911ST-2A">2a </A>
Gribble GW. In Comprehensive Heterocyclic Chemistry
2nd
ed., Vol 2:
Pergammon Press;
New York:
1996.
p.203-257
<A NAME="RA58911ST-2B">2b </A>
Snieckus VA. In The Alkaloids
Vol 11:
Academic
Press;
New York:
1968.
Chap. 1.
<A NAME="RA58911ST-3">3 </A>
Plieninger H.
Suhr K.
Werst G.
Kiefer R.
Chem. Ber.
1956,
89:
270-278
<A NAME="RA58911ST-4">4 </A>
Adams R.
Reifschneider W.
Bull. Soc. Chem. Fr.
1956,
23
<A NAME="RA58911ST-5">5 </A>
Rutolo D.
Lee S.
Sheldon R.
Moore HW.
J. Org. Chem.
1978,
43:
2304
<A NAME="RA58911ST-6">6 </A>
Coutts IGC.
Culbert NJ.
Edwards M.
Hadfield JA.
Musto DR.
Pavlidis VH.
Richards DJ.
J. Chem. Soc., Perkin
Trans. 1
1985,
1829
<A NAME="RA58911ST-7A">7a </A>
Swenton JS.
Acc. Chem. Res.
1983,
16:
74
<A NAME="RA58911ST-7B">7b </A>
Chen CP.
Chou CT.
Swenton JS.
J. Am. Chem. Soc.
1987,
109:
946
<A NAME="RA58911ST-7C">7c </A>
Swenton JS.
Bonk BR.
Chen C.-P.
J. Org. Chem.
1989,
54:
51 ; and earlier studies cited within
<A NAME="RA58911ST-8A">8a </A>
Kerr MA.
Synlett
1995,
1165
<A NAME="RA58911ST-8B">8b </A>
Banfield SC.
England DB.
Kerr MA.
Org. Lett.
2001,
3:
3325
<A NAME="RA58911ST-8C">8c </A>
Banfield SC.
Kerr MA.
Can.
J. Chem.
2004,
82:
131
<A NAME="RA58911ST-9A">9a </A>
Jarvo ER.
Boothroyd SR.
Kerr MA.
Synlett
1996,
897
Select previous reports of quinone mono ketals as dienophiles:
<A NAME="RA58911ST-9B">9b </A>
Carreno MC.
Farina F.
Galan A.
Ruano JLG.
J. Chem.
Res.
1979,
296
<A NAME="RA58911ST-9C">9c </A>
Carreno MC.
Farina F.
Galan A.
Ruano JLG.
J. Chem.
Res.
1981,
370
<A NAME="RA58911ST-10">10 </A>
Zawada PV.
Banfield SC.
Kerr MA.
Synlett
2003,
971
<A NAME="RA58911ST-11">11 </A>
Persons PE.
Mayer JP.
Nichols DE.
Cassady JM.
Smalstig EB.
Clemens JA.
Eur.
J. Med. Chem.
1991,
26:
473
<A NAME="RA58911ST-12">12 </A>
Pappo R.
Allen DS.
Lemieux RU.
Johnson WS.
J.
Org. Chem.
1956,
21:
478
<A NAME="RA58911ST-13">13 </A>
Although not isolated in practice,
the crude diol and dicarbonyl species were characterized in one
case to confirm that these were, in fact, synthetic intermediates.
<A NAME="RA58911ST-14A">14a </A>
Daumas M.
Vo-Quang Y.
Vo-Quang L.
Le Goffic F.
Synthesis
1989,
64
<A NAME="RA58911ST-14B">14b </A>
Zhong Y.-L.
Shing TKM.
J.
Org. Chem.
1997,
62:
2622
<A NAME="RA58911ST-15">15 </A>
Banfield SC.
Ph.
D. Dissertation
The University of Western Ontario,
London;
Canada:
2004.
<A NAME="RA58911ST-16A">16a </A>
Brown DW.
Mahon MF.
Ninan A.
Sainsbury M.
J.
Chem. Soc., Perkin Trans. 1
1997,
2329
<A NAME="RA58911ST-16B">16b </A>
Doss SH.
Louca NA.
Elmegeed GA.
Mohareb RM.
Arch. Pharm.
Res.
1999,
22:
496
<A NAME="RA58911ST-17">17 </A>
England DB.
Kerr MA.
J. Org. Chem.
2005,
70:
6519
<A NAME="RA58911ST-18A">18a </A>
Plieninger H.
Volkl A.
Chem.
Ber.
1976,
109:
2121
<A NAME="RA58911ST-18B">18b </A>
Plieninger H.
Schmalz D.
Westphal J.
Chem.
Ber.
1976,
109:
2127
<A NAME="RA58911ST-18C">18c </A>
Plieninger H.
Schmalz D.
Chem. Ber.
1976,
109:
2141
<A NAME="RA58911ST-18D">18d </A>
Plieninger H.
Lehnert W.
Chem. Ber.
1967,
100:
2427
<A NAME="RA58911ST-19">19 </A>
Banfield SC.
Kerr MA.
Synlett
2001,
436
<A NAME="RA58911ST-20">20 </A>
Maehr H.
Smallheer J.
J. Am. Chem. Soc.
1985,
107:
2943
<A NAME="RA58911ST-21">21 </A>
Herb R.
Carroll AR.
Yoshida WY.
Scheuer PJ.
Paul VJ.
Tetrahedron
1990,
46:
3089
<A NAME="RA58911ST-22">22 </A>
Capon RJ.
Macleod JK.
Scammells PJ.
Tetrahedron
1986,
42:
6545
<A NAME="RA58911ST-23A">23a </A>
Muratake H.
Mikawa A.
Seino T.
Natsume M.
Chem.
Pharm. Bull.
1994,
42:
854
<A NAME="RA58911ST-23B">23b </A>
Muratake H.
Mikawa A.
Seino T.
Natsume M.
Chem. Pharm. Bull.
1994,
42:
846
<A NAME="RA58911ST-24">24 </A>
Buszek KR.
Brown N.
Luo D.
Org.
Lett.
2009,
11:
201
Select examples:
<A NAME="RA58911ST-25A">25a </A>
Macleod JK.
Monaham LC.
Tetrahedron
Lett.
1988,
29:
391
<A NAME="RA58911ST-25B">25b </A>
Blechert S.
Wiedenau P.
Monse B.
Tetrahedron
1995,
51:
1167
<A NAME="RA58911ST-25C">25c </A>
Boger DL.
Zhang M.
J. Am. Chem.
Soc.
1991,
113:
4230
<A NAME="RA58911ST-25D">25d </A>
Kanematsu K.
Lee M.
Ikeda I.
Kawabe T.
Mori S.
J. Org. Chem.
1996,
61:
3406
<A NAME="RA58911ST-26">26 </A>
Silva LF.
Craveiro MV.
Tébéka IRM.
Tetrahedron
2010,
66:
3875
<A NAME="RA58911ST-27A">27a </A>
Jackson SK.
Banfield SC.
Kerr MA.
Org.
Lett.
2005,
7:
1215
<A NAME="RA58911ST-27B">27b </A>
Jackson SJ.
Kerr MA.
J.
Org. Chem.
2007,
72:
1405
<A NAME="RA58911ST-28">28 </A>
Fujimoto Y.
Tatsuno T.
Tetrahedron Lett.
1976,
17:
3325
<A NAME="RA58911ST-29">29 </A>
Todd MH.
Oliver SF.
Abell C.
Org.
Lett.
1999,
1:
1149
<A NAME="RA58911ST-30A">30a </A>
Munday-Finch SC.
Wilkins AL.
Miles CO.
J.
Agric. Food Chem.
1998,
46:
590
<A NAME="RA58911ST-30B">30b </A>
Munday-Finch SC.
Wilkins AL.
Miles CO.
Ede RM.
Thomson RA.
J. Agric. Food Chem.
1996,
44:
2782
<A NAME="RA58911ST-30C">30c </A>
Harrison CA.
Jackson PM.
Moody CJ.
Williams JMJ.
J.
Chem. Soc., Perkin Trans. 1
1995,
1131
<A NAME="RA58911ST-31A">31a </A>
Wilson BJ.
Wilson CH.
Hayes AW.
Nature
1968,
220:
77
<A NAME="RA58911ST-31B">31b </A>
de Jesus AE.
Steyn PS.
van
Heerden FR.
Vleggar R.
Wessels PL.
Hull WE.
J. Chem. Soc., Chem. Commun.
1981,
289
<A NAME="RA58911ST-31C">31c </A>
Smith AB.
Kanoh N.
Ishiyama H.
Minakawa N.
Rainier JD.
Hartz RA.
Cho YS.
Cui H.
Moser WH.
J. Am. Chem. Soc.
2003,
125:
8228
<A NAME="RA58911ST-31D">31d </A>
Smith AB.
Kanoh N.
Ishiyama H.
Hartz RA.
J.
Am. Chem. Soc.
2000,
122:
11254
<A NAME="RA58911ST-31E">31e </A>
Smith AB.
Kanoh N.
Minakawa N.
Rainier JD.
Blase FR.
Hartz RA.
Org.
Lett.
1999,
1:
1263 ;
and earlier studies cited within
<A NAME="RA58911ST-31F">31f </A>
Rivkin A.
Gonzalez-Lopez de Turiso F.
Nagashima T.
Curran DP.
J.
Org. Chem.
2004,
69:
3719
<A NAME="RA58911ST-31G">31g </A>
Rivkin A.
Nagashima T.
Curran DP.
Org.
Lett.
2003,
5:
419
<A NAME="RA58911ST-32">32 </A>
England DB.
Magolan J.
Kerr MA.
Org.
Lett.
2006,
8:
2209
<A NAME="RA58911ST-33">33 </A>
Nicolaou KC.
Lysenko Z.
Tetrahedron Lett.
1977,
18:
1257
<A NAME="RA58911ST-34A">34a </A>
Boger DL.
Boyce CW.
Garbaccio RM.
Goldberg JA.
Chem. Rev.
1997,
97:
787
<A NAME="RA58911ST-34B">34b </A>
Martin DG.
Kelly RC.
Watt W.
Wicnienski N.
Mizsak SA.
Nielsen JW.
Prairie MD.
J. Org. Chem.
1988,
53:
4610
<A NAME="RA58911ST-35A">35a </A>
Tichenor MS.
Kastrinsky DB.
Boger DL.
J.
Am. Chem. Soc.
2004,
126:
8396
<A NAME="RA58911ST-35B">35b </A>
Tichenor MS.
Trzupek JD.
Kastrinsky DB.
Shiga F.
Hwang I.
Boger DL.
J.
Am. Chem. Soc.
2006,
128:
15683
<A NAME="RA58911ST-35C">35c </A>
Okano K.
Tokuyama H.
Fukuyama T.
J.
Am. Chem. Soc.
2006,
128:
7136
<A NAME="RA58911ST-36">36 </A>
Kraus GA.
Yue S.
Sy J.
J.
Org. Chem.
1985,
50:
283
<A NAME="RA58911ST-37">37 </A>
Ganton MD.
Kerr MA.
J. Org. Chem.
2007,
72:
574
<A NAME="RA58911ST-38">38 </A>
Zhang H.
Qiu S.
Tamez P.
Tan GT.
Aydogmus Z.
Hung NV.
Cuong NM.
Angerhofer C.
Doel Soejarto D.
Pezzuto JM.
Fong HHS.
Pharm. Biol.
2002,
40:
221
<A NAME="RA58911ST-39">39 </A>
Leduc AB.
Kerr MA.
Eur. J. Org. Chem.
2007,
237
For recent reviews on the synthesis
of carbazoles, see:
<A NAME="RA58911ST-40A">40a </A>
Knölker H.-J.
Reddy KR. In The Alkaloids
Vol. 65:
Academic
Press;
New York:
2008.
<A NAME="RA58911ST-40B">40b </A>
Knölker H.-J.
Reddy KR.
Chem.
Rev.
2002,
102:
4303
<A NAME="RA58911ST-41A">41a </A>
Kumar V.
Reisch J.
Wickramasinghe A.
Aust. J. Chem.
1989,
42:
1375
<A NAME="RA58911ST-41B">41b </A>
Ito C.
Furukawa H.
Chem. Pharm. Bull.
1990,
38:
1548
<A NAME="RA58911ST-41C">41c </A>
Forke R.
Krahl MP.
Krause T.
Schlechtingen G.
Knö lker H.-J.
Synlett
2007,
268
<A NAME="RA58911ST-41D">41d </A>
Ito C.
Itoigawa M.
Sato A.
Hasan CM.
Rashid MA.
Tokuda H.
Mukainaka T.
Nishino H.
Furukawa H.
J. Nat. Prod.
2004,
67:
1488
<A NAME="RA58911ST-41E">41e </A>
Pacher T.
Bacher M.
Hofer O.
Greger H.
Phytochemistry
2001,
58:
129
<A NAME="RA58911ST-41F">41f </A>
Wang J.
Zheng Y.
Efferth T.
Wang R.
Shen Y.
Hao X.
Phytochemistry
2005,
66:
697
<A NAME="RA58911ST-42">42 </A>
Lebold TP.
Kerr MA.
Org. Lett.
2007,
9:
1883
<A NAME="RA58911ST-43">43 </A>
Koh JH.
Mascarenhas C.
Gagne MR.
Tetrahedron
2004,
60:
7405
<A NAME="RA58911ST-44A">44a </A>
Ito C.
Katsuno S.
Ruangrungsi N.
Furukawa H.
Chem. Pharm.
Bull.
1998,
46:
344
<A NAME="RA58911ST-44B">44b </A>
Wu T.-S.
Huang S.-C.
Wu P.-L.
Chem.
Pharm. Bull.
1998,
46:
1459
<A NAME="RA58911ST-44C">44c </A>
Ito C.
Itoigawa M.
Aizawa K.
Yoshida K.
Ruangrungsi N.
Furukawa H.
J. Nat. Prod.
2009,
72:
1202
<A NAME="RA58911ST-44D">44d </A>
Jana AK.
Mal D.
Chem. Commun.
2010,
46:
4411
<A NAME="RA58911ST-45">45 </A>
Lebold TP.
Kerr MA.
Org. Lett.
2008,
10:
997
<A NAME="RA58911ST-46">46 </A>
Rodriguez J.
Brun P.
Waegell B.
J.
Organomet. Chem.
1989,
359:
343
A slight improvement to 55% ee
could be obtained if the reaction was carried out at 0 ˚C;
however, the significant increase in reaction time was not justified
by the modest increase in ee and as such the reaction was carried
out at room temperature. For asymmetric dihydroxylation (AD-mix-β)
of similar substrates resulting in the formation of the (R ) alcohol, see:
<A NAME="RA58911ST-47A">47a </A>
Sharma R.
Bulger PG.
McNevin M.
Dormer PG.
Ball RG.
Streckfuss E.
Cuff JF.
Yin J.
Cheng C.
Org.
Lett.
2009,
11:
3194
<A NAME="RA58911ST-47B">47b </A>
Kaur N.
Xia Y.
Jin Y.
Dat NT.
Gajulapati K.
Choi Y.
Hong Y.-S.
Lee JJ.
Lee K.
Chem. Commun.
2009,
1879
For asymmetric dihydroxylation (AD-mix-α)
of similar substrates resulting in the formation of the (S ) alcohol, see:
<A NAME="RA58911ST-47C">47c </A>
Jiang H.
Hamada Y.
Org. Biomol. Chem.
2009,
4173 ; and reference 47b
<A NAME="RA58911ST-48">48 </A>
Arhart RJ.
Martin JC.
J. Am. Chem. Soc.
1972,
94:
5003