Abstract
A metal-free, vinyl sulfone-based synthesis of 1,5-disubstituted-1,2,3-triazoles
is reported for the first time. These triazoles are easily formed
in a regioselective fashion by heating under reflux a mixture of
a substituted vinyl sulfone and an organic azide ‘on water’.
This powerful and practical route has the potential to be exploited
for the synthesis of complex 1,5-disubstituted-1,2,3-triazoles.
Key words
triazoles - on water - vinyl sulfone - organic
azide - click chemistry
References and Notes
For recent reviews on 1,2,3-triazoles,
see:
<A NAME="RD16611ST-1A">1a </A>
Kolb HC.
Finn MG.
Sharpless KB.
Angew. Chem. Int. Ed.
2001,
40:
2004
<A NAME="RD16611ST-1B">1b </A>
Bock VD.
Hiemstra H.
Maarseveen JHV.
Eur. J. Org. Chem.
2006,
51
<A NAME="RD16611ST-1C">1c </A>
Santoyo-Gonzalez F.
Hernandez-Mateo F.
Top.
Heterocycl. Chem.
2007,
7:
133
<A NAME="RD16611ST-1D">1d </A>
Tron GC.
Pirali T.
Billington RA.
Canonico PL.
Sorba G.
Genazzani AA.
Med.
Res. Rev.
2008,
28:
278
<A NAME="RD16611ST-1E">1e </A>
Meldal M.
Tornøe CW.
Chem. Rev.
2008,
108:
2952
<A NAME="RD16611ST-1F">1f </A>
Holub JM.
Kirshenbaum K.
Chem.
Soc. Rev.
2010,
39:
1325
<A NAME="RD16611ST-2A">2a </A>
Krasinski A.
Fokin VV.
Sharpless KB.
Org. Lett.
2004,
6:
1237
<A NAME="RD16611ST-2B">2b </A>
Coats SJ.
Link JS.
Gauthier D.
Hlasta DJ.
Org.
Lett.
2005,
7:
1469
<A NAME="RD16611ST-2C">2c </A>
Barr L.
Lincoln SF.
Easton C.
J.
Supramol. Chem.
2005,
17:
547
<A NAME="RD16611ST-2D">2d </A>
Tam A.
Arnold U.
Soellner MB.
Raines RT.
J. Am. Chem.
Soc.
2007,
129:
12670
<A NAME="RD16611ST-2E">2e </A>
Odlo K.
Hentzen J.
Chabert JFD.
Ducki S.
Gani OABSM.
Sylte I.
Skrede M.
Florenes M.
Hansen TV.
Bioorg. Med. Chem.
2008,
16:
4829
<A NAME="RD16611ST-2F">2f </A>
Horne WS.
Olsen CA.
Beierle JM.
Ontero A.
Ghadiri MR.
Angew. Chem. Int. Ed.
2009,
48:
4718
<A NAME="RD16611ST-3A">3a </A>
Zhang L.
Chen X.
Xue P.
Sun HHY.
Williams ID.
Sharpless KB.
Fokin VV.
Jia G.
J. Am. Chem. Soc.
2005,
127:
15998
<A NAME="RD16611ST-3B">3b </A>
Rasmussen LK.
Boren BC.
Fokin VV.
Org. Lett.
2007,
9:
5337
<A NAME="RD16611ST-3C">3c </A>
Boren BC.
Narayan S.
Rasmussen LK.
Zhang L.
Zhao H.
Lin Z.
Jia G.
Fokin VV.
J. Am. Chem. Soc.
2008,
130:
8923
<A NAME="RD16611ST-3D">3d </A>
Kwok SW.
Fotsing JR.
Fraser RJ.
Rodionov VO.
Fokin VV.
Org. Lett.
2010,
12:
4217 ; and references cited therein
For reviews on metal-free triazole
formation, see:
<A NAME="RD16611ST-4A">4a </A>
Becer CR.
Hoogenboom R.
Schubert US.
Angew. Chem. Int. Ed.
2009,
48:
4900
<A NAME="RD16611ST-4B">4b </A>
Jewett JC.
Bertozzi CR.
Chem.
Soc. Rev.
2010,
39:
1272
<A NAME="RD16611ST-5A">5a </A>
Pokorski JK.
Jenkins LMM.
Feng H.
Durell SR.
Bai Y.
Appella DH.
Org. Lett.
2007,
9:
2381
<A NAME="RD16611ST-5B">5b </A>
van Berkel SS.
Dirks AJ.
Meeuwissen SA.
Pingen DLL.
Boerman OC.
Laverman P.
van Delft FL.
Cornelissen JJLM.
Rutjes FPJT.
ChemBioChem
2008,
9:
1805
<A NAME="RD16611ST-5C">5c </A>
Schmieder AP.
Kuhne R.
Rademann J.
Angew. Chem. Int. Ed.
2009,
48:
5042
<A NAME="RD16611ST-6A">6a </A>
L’abbe G.
Chem. Rev.
1969,
69:
345
<A NAME="RD16611ST-6B">6b </A>
Synthetic Applications
of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural
Products
Padwa A.
Pearson WH.
Chichester
(UK):
2002.
<A NAME="RD16611ST-6C">6c </A>
Tomé AC. In Science
of Synthesis
Vol. 13:
Storr RC.
Gilchrist TL.
Thieme;
Stuttgart:
2004.
p.415
<A NAME="RD16611ST-7A">7a </A>
Munk ME.
Kim YK.
J.
Am. Chem. Soc.
1964,
86:
2213
<A NAME="RD16611ST-7B">7b </A>
Nomura Y.
Takeuchi Y.
Tomoda S.
Ito MM.
Bull. Chem. Soc. Jpn.
1981,
54:
261
<A NAME="RD16611ST-7C">7c </A>
Brunner M.
Maas G.
Klaerner F.-G.
Helv.
Chim. Acta
2005,
88:
1813
<A NAME="RD16611ST-8">8 </A>
Beck G.
Guenther D.
Chem. Ber.
1973,
106:
2758
<A NAME="RD16611ST-9">9 </A>
Hager C.
Miethchen R.
Reinke H.
J.
Fluorine Chem.
2000,
104:
135
<A NAME="RD16611ST-10A">10a </A>
Fuchs PL.
Braish TF.
Chem. Rev.
1986,
86:
903
<A NAME="RD16611ST-10B">10b </A>
Simpkins NS.
Sulphones in Organic
Synthesis
Pergamon;
Oxford:
1993.
<A NAME="RD16611ST-10C">10c </A>
Meadows DC.
Hague JG.
Med.
Res. Rev.
2006,
26:
793
<A NAME="RD16611ST-10D">10d </A>
Pathak T.
Tetrahedron
2008,
64:
3605
<A NAME="RD16611ST-10E">10e </A>
El-Awa A.
Noshi MN.
du Jourdin XM.
Fuchs PL.
Chem.
Rev.
2009,
109:
2315
<A NAME="RD16611ST-11">11 </A>
Reeves DC.
Rodriguez S.
Lee H.
Haddad N.
Krishnamurthy D.
Tetrahedron
Lett.
2009,
50:
2870
<A NAME="RD16611ST-12">12 </A>
Yan J.
Wang L.
Synthesis
2010,
447
<A NAME="RD16611ST-13">13 </A>
Vandermeeren L.
Leyssens T.
Peeters D.
J.
Mol. Chem. (Theochem)
2007,
804:
1
<A NAME="RD16611ST-14A">14a </A> The ¹ H
NMR spectral data of 2d [δ = 7.67
(s, 1 H), 7.44-7.48 (m, 3 H), 7.36-7.37
(m, 2 H) ppm] are significantly different
to those of the reported 1,4-regioisomer [δ = 7.78 (d, J = 7.2 Hz, 2 H),
7.73 (s, 1 H), 7.36 (t, J = 7.2 Hz,
2 H), 7.27 (t, J = 7.2 Hz,
1 H) ppm], see:
Campbell-Verduyn LS.
Mirfeizi L.
Dierckx RA.
Elsinga PH.
Feringa BL.
Chem. Commun.
2009,
2139
<A NAME="RD16611ST-14B">14b </A>
Li P.
Wang L.
Lett. Org. Chem.
2007,
4:
23
<A NAME="RD16611ST-15">15 </A>
For the synthesis of 11k from
5-azido-5-deoxy-2,3-O -isopropylidene-β-d -ribofuranoside, 2 equiv of NaHCO3 was used
in the reaction mixture to neutralize the acid generated after elimination.
NaHCO3 is not required for the synthesis of 2b -d , 11a -j or 11l -n .
<A NAME="RD16611ST-16">16 </A>
Farran D.
Slawin AMZ.
Kirsch P.
O’Hagan D.
J.
Org. Chem.
2009,
74:
7168
HCCCH2 OBn reacts with
organic azides in the presence of Cu(I) catalysts, to generate only
1,4-disubstituted-1,2,3-triazoles, see:
<A NAME="RD16611ST-17A">17a </A>
Collin MP.
Hobbie SN.
Bottger EC.
Vasella A.
Helv.
Chim. Acta
2008,
91:
1838
<A NAME="RD16611ST-17B">17b </A>
Langhals H.
Obermeier A.
Eur. J. Org. Chem.
2008,
6144
<A NAME="RD16611ST-18">18 </A>
Narayan S.
Muldoon J.
Finn MG.
Fokin VV.
Kolb HC.
Sharpless KB.
Angew. Chem. Int.
Ed.
2005,
44:
3275
<A NAME="RD16611ST-19">19 </A> For a review on organic synthesis ‘on
water’, see:
Chanda A.
Fokin VV.
Chem. Rev.
2009,
109:
725
<A NAME="RD16611ST-20">20 </A>
General procedure
for the synthesis of 1,5-disubstituted-1,2,3-triazoles (2b-d
and 11a-n): A mixture of vinyl sulfone 6 or 10 (1 mmol), and azide (1.5 mmol for monoazide
and 0.5 mmol for diazide) in water (10 mL/mmol of 6 or 10 ) was heated
at reflux temperature for 3-19 h. After completion
of the reaction (monitored by TLC) the reaction mixture was treated
with sat. NaHCO3 and the product was extracted with EtOAc
(3 × 30 mL). The organic layer was dried
over anhydrous Na2 SO4 , filtered, and the filtrate
was evaporated to dryness under reduced pressure. The residue was
purified by silica column chromatography to afford the corresponding
1,5-disubstituted-1,2,3-triazoles 2b -d and 11a -n .