Abstract
The reductive ring-opening of hydroperoxides derived from cyclic
ketones leads to alkyl radicals which can effectively be trapped
by arenediazonium salts. This synthetic transformation yielding
azo carboxylic acids or lactams, after a reductive step, can be
classified as a radical version of the well-known Beckmann rearrangement.
In this article, we present results on the scope, the limitations
and possible applications of this new reaction type.
Key words
radical reaction - rearrangement - ketones - carboxylic acids - azo compounds
References
<A NAME="RT55210SS-1">1 </A>
Metzger H.
Houben-Weyl
Vol. X/4:
Georg
Thieme Verlag;
Stuttgart:
1968.
p.1-308
<A NAME="RT55210SS-2">2 </A> For a first report, see:
Beckmann E.
Ber. Dtsch. Chem. Ges.
1886,
19:
988
For review articles, see:
<A NAME="RT55210SS-3A">3a </A> For a first report, see:
Blatt AH.
Chem. Rev.
1933,
12:
215 ; and references cited therein
<A NAME="RT55210SS-3B">3b </A>
Jones B.
Chem.
Rev.
1944,
35:
335
<A NAME="RT55210SS-3C">3c </A>
Gawley RE.
Org. React.
1988,
35:
1
<A NAME="RT55210SS-3D">3d </A>
Craig D.
Comprehensive Organic Synthesis
Vol.
7:
Trost BM.
Fleming I.
Pergamon;
Oxford:
1991.
p.689 ; and references cited therein
<A NAME="RT55210SS-3E">3e </A>
Smith MB.
March J.
March’s Advanced Organic Chemistry
6th
ed.:
John Wiley & Sons;
Hoboken:
2007.
p.1613
<A NAME="RT55210SS-4">4 </A>
Hendrickson JB.
Cram DJ.
Hammond GS.
Organic Chemistry
3rd
ed.:
McGraw-Hill;
Tokyo:
1970.
p.708
<A NAME="RT55210SS-5">5 </A> For the use of SOCl2 ,
see:
Butler RN.
O’Donoghue DA.
J. Chem. Res., Synop.
1983,
18
<A NAME="RT55210SS-6">6 </A> For rearrangements of oxime p -toluenesulfonates using silica gel,
see:
Costa A.
Mestres R.
Riego JM.
Synth. Commun.
1982,
12:
1003
<A NAME="RT55210SS-7">7 </A> For a report on the application of
MoO3 on silica gel, see:
Dongare MK.
Bhagwat VV.
Ramana CV.
Gurjar MK.
Tetrahedron
Lett.
2004,
45:
4759
<A NAME="RT55210SS-8">8 </A> For the use of montmorillonite KSF,
see:
Meshram HM.
Synth. Commun.
1990,
20:
3253
<A NAME="RT55210SS-9">9 </A> For RuCl3 -mediated Beckmann
rearrangements, see:
De S K.
Synth.
Commun.
2004,
34:
3431
<A NAME="RT55210SS-10">10 </A> For Y(OTf)3 -mediated
Beckmann rearrangements, see:
De S K.
Org.
Prep. Proced. Int.
2004,
36:
383
<A NAME="RT55210SS-11">11 </A> For BiCl3 -mediated Beckmann
rearrangements, see:
Thakur AJ.
Boruah A.
Prajapati D.
Sandhu JS.
Synth. Commun.
2000,
30:
2105
<A NAME="RT55210SS-12">12 </A> For the use of 2,4,6-trichloro-1,3,5-triazine,
see:
Luca LD.
Giacomelli G.
Porcheddu A.
J. Org.
Chem.
2002,
67:
6272
<A NAME="RT55210SS-13">13 </A> For Ga(OTf)3 -mediated
Beckmann rearrangements, see:
Yan P.
Batamack P.
Prakash GKS.
Olah GA.
Catal. Lett.
2005,
103:
165
For the use of rare earth exchanged
zeolites, see:
<A NAME="RT55210SS-14A">14a </A>
Thomas B.
Prathapan S.
Sugunan S.
Microporous Mesoporous
Mater.
2005,
84:
137
<A NAME="RT55210SS-14B">14b </A>
Thomas B.
Sugunan S.
Microporous Mesoporous Mater.
2006,
96:
55
<A NAME="RT55210SS-15A">15a </A>
Zhang Z.
Li J.
Yang X.
Catal. Lett.
2007,
118:
300
<A NAME="RT55210SS-15B">15b </A>
Li Z.
Lu Z.
Ding R.
Yang J.
J. Chem. Res.
2006,
668
<A NAME="RT55210SS-15C">15c </A>
Priya SV.
Mabel JH.
Palanichamy M.
Murugesan V.
Stud.
Surf. Sci. Catal.
2008,
174:
1147
For Beckmann rearrangements in
the vapor phase, see:
<A NAME="RT55210SS-16A">16a </A>
Maheswari R.
Shanthi K.
Sivakumar T.
Narayanan S.
Appl. Catal., A
2003,
248(1-2):
291
<A NAME="RT55210SS-16B">16b </A>
Mao D.
Chen Q.
Lu G.
Appl.
Catal., A
2003,
244(2):
273
<A NAME="RT55210SS-16C">16c </A>
Izumi Y.
Ichihashi H.
Shimazu Y.
Kitamura M.
Sato H.
Bull. Chem.
Soc. Jpn.
2007,
80:
1280
For Beckmann rearrangements in
supercritical water, see:
<A NAME="RT55210SS-17A">17a </A>
Ikushima Y.
Hatakeda K.
Sato O.
Yokoyama T.
Arai M.
J.
Am. Chem. Soc.
2000,
122:
1908
<A NAME="RT55210SS-17B">17b </A>
Boero M.
Ikeshoji T.
Liew CC.
Terakura K.
Parrinello M.
J.
Am. Chem. Soc.
2004,
126:
6280
For Beckmann rearrangements in
ionic liquids, see:
<A NAME="RT55210SS-18A">18a </A>
Peng J.
Deng Y.
Tetrahedron Lett.
2001,
42:
403
<A NAME="RT55210SS-18B">18b </A>
Ren RX.
Zueva LD.
Ou W.
Tetrahedron Lett.
2001,
42:
8441
<A NAME="RT55210SS-18C">18c </A>
Lee JK.
Kim D.
Song CE.
Lee S.
Synth. Commun.
2003,
33:
2301
<A NAME="RT55210SS-19">19 </A> For a review on nitrogen-centered
radical scavengers, see:
Höfling S.
Heinrich MR.
Synthesis
2011,
173
For sulfonyl azides as N-centered
radical scavengers, see:
<A NAME="RT55210SS-20A">20a </A>
Renaud P.
Ollivier C.
J. Am. Chem. Soc.
2000,
122:
6496
<A NAME="RT55210SS-20B">20b </A>
Renaud P.
Panchaud P.
Chabaud L.
Landais Y.
Ollivier C.
Zigmantas S.
Chem. Eur. J.
2004,
10:
3606
<A NAME="RT55210SS-20C">20c </A>
Renaud P.
Kapat A.
Nyfeler E.
Giuffredi GT.
J. Am. Chem. Soc.
2009,
131:
17746
For nitroso compounds as N-centered
radical scavengers, see:
<A NAME="RT55210SS-21A">21a </A>
Girard P.
Guillot N.
Motherwell WB.
Potier P.
J. Chem. Soc., Chem. Commun.
1995,
2385
<A NAME="RT55210SS-21B">21b </A>
Girard P.
Guillot N.
Motherwell WB.
Hay-Motherwell RS.
Potier P.
Tetrahedron
1999,
55:
3573
For imines as N-centered radical
scavengers, see:
<A NAME="RT55210SS-22A">22a </A>
Ryu I.
Matsu K.
Minakata S.
Komatsu M.
J. Am. Chem. Soc.
1998,
120:
5838
<A NAME="RT55210SS-22B">22b </A>
Lamas C.-M.
Vaillard SE.
Wibbeling B.
Studer A.
Org. Lett.
2010,
12:
2072
For azo compounds as N-centered
radical scavengers, see:
<A NAME="RT55210SS-23A">23a </A>
Alberti A.
Bedogni N.
Benaglia M.
Leardini R.
Nanni D.
Pedulli GF.
Tundo A.
Zanardi G.
J. Org. Chem.
1992,
57:
607
<A NAME="RT55210SS-23B">23b </A>
Baigrie BD.
Cadogan JIG.
Sharp JT.
J. Chem. Soc., Perkin
Trans. 1
1975,
1029
For diazirines as N-centered radical
scavengers, see:
<A NAME="RT55210SS-24A">24a </A>
Barton DHR.
Jaszberenyi JC.
Theodorakis EA.
J. Am. Chem.
Soc.
1992,
114:
5904
<A NAME="RT55210SS-24B">24b </A>
Barton DHR.
Jaszberenyi JS.
Theodorakis EA.
Reibenspies JH.
J. Am. Chem. Soc.
1993,
115:
8050
For recent reports on arenediazonium
salts as radical scavengers, see:
<A NAME="RT55210SS-25A">25a </A>
Heinrich MR.
Blank O.
Wölfel S.
Org. Lett.
2006,
8:
3323
<A NAME="RT55210SS-25B">25b </A>
Blank O.
Heinrich MR.
Eur. J. Org. Chem.
2006,
4331
<A NAME="RT55210SS-25C">25c </A>
Heinrich MR.
Blank O.
Wetzel A.
Synlett
2006,
3352
<A NAME="RT55210SS-25D">25d </A>
Heinrich MR.
Blank O.
Wetzel A.
J.
Org. Chem.
2007,
72:
476
<A NAME="RT55210SS-25E">25e </A>
Blank O.
Wetzel A.
Ullrich D.
Heinrich MR.
Eur. J. Org. Chem.
2008,
3179
<A NAME="RT55210SS-26">26 </A>
Criegee R.
Houben-Weyl
Vol.
VIII:
Georg Thieme Verlag;
Stuttgart:
1968.
p.1-74
For radical reactions employing
hydroperoxides (as radical sources) in combination with arenediazonium
salts (as radical scavengers), see:
<A NAME="RT55210SS-27A">27a </A>
Citterio A.
Minisci F.
J. Org. Chem.
1982,
47:
1759
<A NAME="RT55210SS-27B">27b </A>
Blank O.
Raschke N.
Heinrich MR.
Tetrahedron
Lett.
2010,
51:
1758
<A NAME="RT55210SS-28">28 </A>
For hydrogenolytic cleavage of N=N
bonds, see ref. 25a and 25e.
For the iron(II) or copper(I)-mediated
cleavage of (hydro-)peroxides, see:
<A NAME="RT55210SS-29A">29a </A>
Walling C.
Zavitsas AA.
J. Am.
Chem. Soc.
1963,
85:
2084
<A NAME="RT55210SS-29B">29b </A>
Walling C.
Acc. Chem.
Res.
1975,
8:
125
<A NAME="RT55210SS-29C">29c </A>
Schreiber SL.
J. Am. Chem. Soc.
1980,
102:
6163
<A NAME="RT55210SS-29D">29d </A>
Schreiber SL.
Hulin B.
Liew W.-F.
Tetrahedron
1986,
42:
2945
For review articles on oxygen-centered
radicals, see:
<A NAME="RT55210SS-30A">30a </A>
Suárez E.
Rodriguez MS. In Radicals in Organic Synthesis
1st
ed., Vol. 2:
Renaud P.
Sibi MP.
Wiley-VCH;
Weinheim:
2001.
p.440
<A NAME="RT55210SS-30B">30b </A>
Hartung J.
Gottwald T.
Spehar K.
Synthesis
2002,
1469
<A NAME="RT55210SS-31A">31a </A>
Francisco CG.
González CC.
Kennedy AR.
Paz NR.
Suárez E.
Chem.
Eur. J.
2008,
14:
6704
<A NAME="RT55210SS-31B">31b </A>
Alonso-Cruz CR.
Kennedy AR.
Rodriguez MS.
Suárez E.
Tetrahedron
Lett.
2007,
48:
7207
<A NAME="RT55210SS-31C">31c </A>
Dichtl A.
Seyfried M.
Schoening K.-U.
Synlett
2008,
1877
For review articles on arenediazonium
salts as sources for aryl radicals, see:
<A NAME="RT55210SS-32A">32a </A>
Galli C.
Chem.
Rev.
1988,
88:
765
<A NAME="RT55210SS-32B">32b </A>
Heinrich MR.
Chem. Eur. J.
2009,
15:
820
For the formation of diversely
substituted carboxylic and dicarboxylic acids from cyclic hydroperoxides
upon reduction, see:
<A NAME="RT55210SS-33A">33a </A>
Cooper W.
Davison WHT.
J. Chem. Soc.
1952,
1180
<A NAME="RT55210SS-33B">33b </A>
Hawkins EGE.
J. Chem. Soc.
1955,
3463
<A NAME="RT55210SS-33C">33c </A>
Kharasch MS.
Nudenberg W.
J. Org.
Chem.
1954,
19:
1921
<A NAME="RT55210SS-33D">33d </A>
Braunwarth JB.
Crosby GW.
J.
Org. Chem.
1962,
27:
2064
<A NAME="RT55210SS-33E">33e </A>
De La Mare HE.
Kochi JK.
Rust FF.
J. Am. Chem. Soc.
1963,
85:
1437
For recent reports on bond strengths
and radical stability, see:
<A NAME="RT55210SS-34A">34a </A>
Zipse H.
Top.
Curr. Chem.
2006,
263:
163
<A NAME="RT55210SS-34B">34b </A>
Zavitsas A.
J.
Org. Chem.
2008,
73:
9022
<A NAME="RT55210SS-35">35 </A> For an example of a temperature-dependent
ring-opening reaction, see:
Beckwith ALJ.
Kazlauskas R.
Syner-Lyons MR.
J. Org. Chem.
1983,
48:
4718
<A NAME="RT55210SS-36">36 </A> For a computational study on the
regioselectivity of alkoxy radical fragmentation, see:
Wilsey S.
Dowd P.
Houk KN.
J. Org. Chem.
1999,
64:
8801
For syntheses of hydroperoxides
from cyclic ketones and studies on their structure see
<A NAME="RT55210SS-37A">37a </A>
Milas NA.
Harris SA.
Panagiotakos PC.
J. Am. Chem. Soc.
1939,
61:
2430
<A NAME="RT55210SS-37B">37b </A>
Criegee R.
Schnorrenberg W.
Becke J.
Justus
Liebigs Ann. Chem.
1949,
565:
7
<A NAME="RT55210SS-37C">37c </A>
Karasch MS.
Sosnovsky G.
J. Org.
Chem.
1958,
23:
1322
<A NAME="RT55210SS-37D">37d </A>
Brown N.
Hartig MJ.
Roedel MJ.
Anderson AW.
Schweitzer CE.
J. Am. Chem. Soc.
1955,
77:
1756
<A NAME="RT55210SS-38">38 </A> For a study on equilibrium data
for the formation of cyclic hydroperoxides in dioxane see:
Jacobson SE.
Mares F.
Zambri PM.
J. Am. Chem. Soc.
1979,
101:
6938
<A NAME="RT55210SS-39">39 </A>
For reports of varying yields of dodecanedioic
acid dependent on the composition of peroxide, see ref. 33b and 37c.
<A NAME="RT55210SS-40">40 </A>
Röder E.
Krauß H.
Liebigs Ann. Chem.
1992,
177
<A NAME="RT55210SS-41">41 </A>
Heinrich MR.
Blank O.
Ullrich D.
Kirschstein M.
J. Org. Chem.
2007,
72:
9609
<A NAME="RT55210SS-42">42 </A>
Elofson RM.
Gadallah FF.
J. Org. Chem.
1971,
36:
1769
Two rare examples for the preparation
of azo carboxylic acids have been reported by
<A NAME="RT55210SS-43A">43a </A>
Fusco R.
Romani R.
Gazz. Chim. Ital.
1948,
78:
342
<A NAME="RT55210SS-43B">43b </A>
Khaimov IN.
Trudy Tadzhik. Sel’skokhoz. Inst.
1958,
1:
33
<A NAME="RT55210SS-44">44 </A>
After column chromatography on silica
gel, a number of new compounds were detected that had not been present
before. Several attempts including the variation of solvents and
the use of deactivated silica gel were unsuccessful in preventing the
partial decomposition of the azo carboxylic acids 9 . Independent NMR experiments pointed to the formation of hydrazones
as first intermediates of the decomposition pathway.
<A NAME="RT55210SS-45">45 </A> The instability of related azo compounds
to chromatography was also reported in:
Baldwin JE.
Adlington RM.
Bottaro JC.
Kolhe JN.
Perry MWD.
Jain AU.
Tetrahedron
1986,
42:
4223
<A NAME="RT55210SS-46">46 </A> A mixture was obtained when using
classical Beckmann conditions:
Schäffler A.
Ziegenbein W.
Chem. Ber.
1955,
88:
1374
<A NAME="RT55210SS-47">47 </A>
Better selectivities can be observed
with the newly developed reagents, see refs. 8, 11, 12 and 13.
<A NAME="RT55210SS-48">48 </A>
Exceptions are carboxylic acids 9ac , 9da , and 9ha , which were accompanied by hydrazones
in the ratios 9 /hydrazone 2:1,
3:1, and 2:1, respectively.
<A NAME="RT55210SS-49">49 </A>
de Vleeschouwer F.
van Speybroeck V.
Waroquier M.
Geerlings P.
de Proft F.
Org. Lett.
2007,
9:
2721
<A NAME="RT55210SS-50A">50a </A>
See
ref. 25d.
<A NAME="RT55210SS-50B">50b </A>
Haag BA.
Zhang Z.
Li J.
Knochel P.
Angew. Chem. Int. Ed.
2010,
49:
9513
<A NAME="RT55210SS-50C">50c </A>
Rossiter S.
Folkes LK.
Wardman P.
Bioorg.
Med. Chem. Lett.
2002,
12:
2523
<A NAME="RT55210SS-51">51 </A> For a formation of lactams from
azo carboxylic esters, see:
Baldwin JE.
Adlington RM.
Jain AU.
Kolhe JN.
Perry MWD.
Tetrahedron
1986,
42:
4247
<A NAME="RT55210SS-52A">52a </A>
Molina CL.
Chow CP.
Shea KJ.
J. Org. Chem.
2007,
72:
6816
<A NAME="RT55210SS-52B">52b </A>
Rautenstrauch V.
Delay F.
Angew. Chem.
Int. Ed.
1980,
19:
726
<A NAME="RT55210SS-52C">52c </A>
Matsuyama H.
Itoh N.
Matsumoto A.
Ohira N.
Hara K.
Yoshida M.
Iyoda M.
J. Chem. Soc.,
Perkin Trans. 1
2001,
2924
<A NAME="RT55210SS-52D">52d </A>
Fernández R.
Ferrete A.
Llera JM.
Magriz A.
Martín-Zamora E.
Díez E.
Lassaletta JM.
Chem. Eur. J.
2004,
10:
737
<A NAME="RT55210SS-52E">52e </A>
Friestad GK.
Qin J.
J. Am. Chem.
Soc.
2001,
123:
9922
<A NAME="RT55210SS-53">53 </A>
The literature procedure given in
ref. 52d was slightly modified by refluxing the reaction mixture
for 4 hours.
<A NAME="RT55210SS-54A">54a </A>
Gruner M.
Pfeifer D.
Becker HGO.
Radeglia R.
Epperlein J.
J. Prakt.
Chem.
1985,
327:
63
<A NAME="RT55210SS-54B">54b </A>
Bahr JL.
Yang J.
Kosynkin DV.
Bronikowski MJ.
Smalley RE.
Tour JM.
J. Am. Chem. Soc.
2001,
123:
6536
<A NAME="RT55210SS-55">55 </A>
Burnell DJ.
Wu Y.
Can. J. Chem.
1990,
68:
804
<A NAME="RT55210SS-56">56 </A>
Haynes RK.
King GR.
Vonwiller SC.
J. Org. Chem.
1994,
59:
4743
<A NAME="RT55210SS-57A">57a </A>
Golding BT.
Bleasdale C.
McGinnis J.
Müller S.
Rees HT.
Rees NH.
Farmer PB.
Watson WP.
Tetrahedron
1997,
53:
4063
<A NAME="RT55210SS-57B">57b </A>
Snyder JK.
Stock LM.
J.
Org. Chem.
1980,
45:
886
<A NAME="RT55210SS-58A">58a </A>
Takemiya A.
Hartwig JF.
J.
Am. Chem. Soc.
2006,
128:
14800
<A NAME="RT55210SS-58B">58b </A>
Schmidt AM.
Eilbracht P.
Org. Biomol. Chem.
2005,
3:
2333
<A NAME="RT55210SS-59">59 </A>
Bullock MW.
Fox SW.
J. Am. Chem. Soc.
1951,
73:
5155
<A NAME="RT55210SS-60">60 </A>
Ramalingan C.
Park Y.-T.
Synthesis
2008,
1351