Abstract
The phosphine-free ruthenium complex containing chi-ral N -(p -toluenesulfonyl)-1,2-diphenylethylenediamine
(TsDPEN) showed excellent stereoselectivity in the tandem asymmetric
reduction of 2-(aroylmethyl)quinolines. The reaction involves transfer hydrogenation
of aromatic ketones and hydrogenation of quinolines, giving 1,2,3,4-tetrahydroquinoline
derivatives with up to 99% ee and 95:5 dr.
Key words
asymmetric catalysis - tandem reaction - quinolines - ruthenium - hydrogenation
References and Notes
For recent reviews, see:
1a
Glorius F.
Org.
Biomol. Chem.
2005,
3:
4171
1b
Zhou Y.-G.
Acc.
Chem. Res.
2007,
40:
1357
1c
Kuwano R.
Heterocycles
2008,
76:
909
2
Wang W.-B.
Lu S.-M.
Yang P.-Y.
Han X.-W.
Zhou Y.-G.
J.
Am. Chem. Soc.
2003,
125:
10536
For selected recent examples of
asymmetric hydrogenation of quinolines, see:
3a
Lu S.-M.
Han X.-W.
Zhou Y.-G.
Adv.
Synth. Catal.
2004,
346:
909
3b
Wang D.-W.
Wang X.-B.
Wang D.-S.
Lu S.-M.
Zhou Y.-G.
Li Y.-X.
J. Org. Chem.
2009,
74:
2780
3c
Wang D.-S.
Zhou
Y.-G.
Tetrahedron Lett.
2010,
51:
3014
3d
Xu L.-J.
Lam KH.
Ji JX.
Fan Q.-H.
Lo W.-H.
Chan ASC.
Chem. Commun.
2005,
1390
3e
Tang W.-J.
Zhu S.-F.
Xu L.-J.
Zhou Q.-L.
Fan Q.-H.
Zhou H.-F.
Lam K.
Chan ASC.
Chem. Commun.
2007,
613
3f
Wang ZJ.
Deng GJ.
Li Y.
He YM.
Tang WJ.
Fan QH.
Org.
Lett.
2007,
9:
1243
3g
Reetz M.
Li X.
Chem. Commun.
2006,
2159
3h
Mršić N.
Lefort L.
Boogers JAF.
Minnaard AJ.
Feringa BL.
de Vries JG.
Adv. Synth. Catal.
2008,
350:
1081
3i
Tadaoka H.
Cartigny D.
Nagano T.
Gosavi T.
Ayad T.
Genêt JP.
Ohshima T.
Ratovelomanana-Vidal V.
Mashima K.
Chem. Eur.
J.
2009,
15:
9990
4a
Zhou HF.
Li ZW.
Wang ZJ.
Wang TL.
Xu LJ.
He YM.
Fan Q.-H.
Pan J.
Gu LQ.
Chan ASC.
Angew.
Chem. Int. Ed.
2008,
47:
8464
4b
Wang Z.-J.
Zhou H.-F.
Wang T.-L.
He Y.-M.
Fan Q.-H.
Green Chem.
2009,
11:
767
4c
Li Z.-W.
Wang T.-L.
He
Y.-M.
Wang Z.-J.
Fan Q.-H.
Pan J.
Xu L.-J.
Org.
Lett.
2008,
10:
5265
For selected examples of asymmetric
hydrogenation of other heteroaromatic compounds, see: For indoles
and pyrroles:
5a
Kuwano R.
Sato K.
Kurokawa T.
Karube D.
Ito Y.
J.
Am. Chem. Soc.
2000,
122:
7614
5b
Wang D.-S.
Chen Q.-A.
Li W.
Yu C.-B.
Zhou Y.-G.
Zhang X.
J. Am. Chem. Soc.
2010,
132:
8909
5c
Kuwano R.
Kashiwabara M.
Ohsumi M.
Kusano H.
J. Am. Chem. Soc.
2008,
130:
808
5d For furans, see: Kaiser S.
Smidt SP.
Pfaltz A.
Angew. Chem. Int. Ed.
2006,
45:
5194
5e For pyridines, see: Legault CY.
Charette AB.
J.
Am. Chem. Soc.
2005,
127:
8966
5f For isoquinolines, see: Lu SM.
Wang YQ.
Han XW.
Zhou Y.-G.
Angew.
Chem. Int. Ed.
2006,
45:
2260
For quinoxalines, see:
5g
Tang W.-J.
Xu L.-J.
Fan Q.-H.
Wang J.
Fan B.-M.
Lam K.-H.
Chan ASC.
Angew. Chem.
Int. Ed.
2009,
48:
9135
5h
Mršić N.
Jerphagnon T.
Minnaard AJ.
Feringa BL.
de Vries
JG.
Adv.
Synth. Catal.
2009,
351:
2549
6
Carey ARE.
Fukata G.
O’Ferrall RAM.
Murphy
MG.
J. Chem. Soc., Perkin Trans. 2
1985,
1711
For metal complexes containing diamine
ligands for asymmetric hydrogenation, see:
7a
Ito M.
Hirakawa M.
Murata K.
Ikariya T.
Organometallics
2001,
20:
379
7b
Ohkuma T.
Utsumi N.
Tsutsumi K.
Murata K.
Sandoval CA.
Noyori R.
J. Am. Chem. Soc.
2006,
128:
8724
7c
Ohkuma T.
Tsutsumi K.
Utsumi N.
Arai N.
Noyori R.
Murata K.
Org. Lett.
2007,
9:
255
7d
Li C.
Xiao J.
J. Am. Chem. Soc.
2008,
130:
13208
7e
Chen f.
Wang T.-L.
He Y.-M.
Ding Z.-Y.
Li Z.-W.
Xu L.-J.
Fan Q.-H.
Chem.
Eur. J.
2011,
17:
1109
8
Wang X.-B.
Wang D.-W.
Lu S.-M.
Yu C.-B.
Zhou
Y.-G.
Tetrahedron:
Asymmetry
2009,
20:
1040
9a
Noyori R.
Hashiguchi S.
Acc.
Chem. Res.
1997,
30:
97
9b
Hashiguchi S.
Fujii A.
Takehara J.
Ikariya T.
Noyori R.
J.
Am. Chem. Soc.
1995,
117:
7562
10
Sidler DR.
Sager JW.
Bergan JJ.
Wells KM.
Bhupathy M.
Volante RP.
Tetrahedron:
Asymmetry
1997,
8:
161
11 For transition-metal-catalyzed asymmetric
transfer hydrogenation of quinolines in acidic aqueous buffer solution,
see: Wang C.
Li C.
Wu X.
Pettman A.
Xiao J.
Angew. Chem. Int. Ed.
2009,
48:
6524
12
Typical procedure
for the Ru-catalyzed asymmetric ATH/AH reactions :
Into a 50 mL glass-lined stainless steel reactor with a magnetic
stirring bar was charged (R ,R )-1b (0.6 mg,
0.001 mmol), substrate 2a (24.7 mg, 0.1
mmol) and degassed EtOH (1 mL) under a nitrogen atmosphere, and
the mixture was stirred at r.t. for 24 h. Then, to the reaction mixture
was added a solution of 1.0 M TfOH in EtOH (100 µL, 0.001
mmol, 1 mol% cf substrate) under
a nitrogen atmosphere. The autoclave was closed, and H2 was
initially introduced into the autoclave at a pressure of 50 atm,
before being reduced to 1 atm. After this procedure was
repeated three times, the autoclave was pressurized with H2 to
50 atm. Subsequently, the mixture was stirred under this
H2 pressure at r.t. for another 12 h. After carefully
releasing the hydrogen, the mixture was concentrated to afford the
crude product. The conversion and diastereoselectivity were determined
by ¹ H NMR analysis of the crude product. Further
purification was performed with a silica gel column (PE-CH2 Cl2 ,
1:1) to give the pure product, (+)-1-phenyl-2-(1,2,3,4-tetrahydroquinolin-2-yl)ethanol
(4a ). Isolated yield: 94%; >95:5
dr; >99% ee; [α]
d
²0 +67.9
(c 1.00, CHCl3 ); ¹ H
NMR (300 MHz, CDCl3 ): δ = 7.38-7.29
(m, 5 H), 7.00-6.95 (m, 2 H), 6.67-6.62
(m, 1 H), 6.49 (d, J = 7.8
Hz, 1 H), 5.02 (t, J = 6.6
Hz, 1 H), 3.55-3.47 (m, 1 H), 2.88-2.69
(m, 2 H), 1.97-1.90 (m, 3 H), 1.88-1.81
(m, 1 H); ¹³ C NMR (75 MHz,
CDCl3 ): δ = 143.34, 143.14, 128.30,
127.56, 126.61, 125.70, 124.69, 120.69, 116.73, 113.99, 71.07, 47.79,
43.67, 26.95, 25.15; HRMS (ESI): m /z [M + H]+ calcd
for C17 H20 NO: 254.15394; found: 254.15385.