Synthesis 2011(5): 749-754  
DOI: 10.1055/s-0030-1259569
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of trans-4-Triazolyl-Substituted 3-Hydroxypiperidines

Rianne A. G. Harmsena, Leiv K. Sydnesa, Karl W. Törnroosa, Bengt Erik Haug*a,b
a Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway
b Centre for Pharmacy, University of Bergen, Allégaten 41, 5007 Bergen, Norway
Fax: +47(55)589490; e-Mail: Bengt-Erik.Haug@farm.uib.no;
Further Information

Publication History

Received 22 November 2010
Publication Date:
03 February 2011 (online)

Abstract

The synthesis of tert-butyl trans-4-ethynyl-3-hydroxypiperidine-1-carboxylate is described via regioselective ring-opening of a racemic N-Boc-protected 7-oxa-3-azabicyclo[4.1.0]heptane, and serves as a new scaffold for the preparation of substituted piperidines. The terminal alkyne is converted into 1,4- and 1,5-disubstituted 1,2,3-triazoles through 1,3-dipolar cycloaddition reactions with organic azides.

    References

  • 1 Evans BE. Rittle KE. Bock MG. Freidinger RM. Whitter WL. Lundell GF. Veber DF. Anderson PS. Chang RSL. Lotti VJ. Cerino DJ. Chen TB. Kling PJ. Kunkel KA. Springer JP. Hirshfield J. J. Med. Chem.  1988,  31:  2235 
  • 2a Mason JS. Morize I. Menard PR. Cheney DL. Hulme C. Labaudiniere RF. J. Med. Chem.  1999,  42:  3251 
  • 2b Costantino L. Barlocco D. Curr. Med. Chem.  2006,  13:  65 
  • 3 Eicher T. Hauptmann S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses and Applications   2nd ed.:  Wiley-VCH; Weinheim: 2003. 
  • 4a Buffat MGP. Tetrahedron  2004,  60:  1701 
  • 4b De Risi C. Fanton G. Pollini GP. Trapella C. Valente F. Zanirato V. Tetrahedron: Asymmetry  2008,  19:  131 
  • 5a Schramm H. Pavlova M. Hoenke C. Christoffers J. Synthesis  2009,  1659 
  • 5b Schramm H. Saak W. Hoenke C. Christoffers J. Eur. J. Org. Chem.  2010,  1745 
  • 6 Wang D. Nugent WA. J. Org. Chem.  2007,  72:  7307 
  • 7 Kim BJ. Pyun DK. Jung HJ. Kwak HJ. Kim JH. Kim EJ. Jeong WJ. Lee CH. Synth. Commun.  2001,  31:  1081 
  • 8 Marquis RW. Yamashita DS. Ru Y. LoCastro SM. Oh H.-J. Erhard KF. DesJarlais RL. Head MS. Smith WW. Zhao B. Janson CA. Abdel-Meguid SS. Tomaszek TA. Levy MA. Veber DF. J. Med. Chem.  1998,  41:  3563 
  • 9a Alexakis A. Jachiet D. Normant JF. Tetrahedron  1986,  42:  5607 
  • 9b Alexakis A. Jachiet D. Tetrahedron  1989,  45:  6197 
  • 9c Skrydstrup T. Bénéchie M. Khuong-Huu F. Tetrahedron Lett.  1990,  31:  7145 
  • 10a Yamaguchi M. Hirao I. Tetrahedron Lett.  1983,  24:  391 
  • 10b Eis MJ. Wrobel JE. Ganem B. J. Am. Chem. Soc.  1984,  106:  3693 
  • 11a Zhao H. Pagenkopf BL. Chem. Commun.  2003,  2592 
  • 11b Zhao H. Engers DW. Morales CL. Pagenkopf BL. Tetrahedron  2007,  63:  8774 
  • 13 Huisgen R. In 1,3-Dipolar Cycloaddition Chemistry   Padwa A. Wiley; New York: 1984.  p.1-176  
  • 14 Tornøe CW. Christensen C. Meldal M. J. Org. Chem.  2002,  67:  3057 
  • 15 Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 16 Zhang L. Chen X. Xue P. Sun HHY. Williams ID. Sharpless KB. Fokin VV. Jia G. J. Am. Chem. Soc.  2005,  127:  15998 
  • 17 Aucagne V. Berná J. Crowley JD. Goldup SM. Hänni KD. Leigh DA. Lu sby PJ. Ronaldson VE. Slawin AMZ. Viterisi A. Walker DB. J. Am. Chem. Soc.  2007,  129:  11950 
  • 18a Appukkuttan P. Dehaen W. Fokin VV. Van der Eycken E. Org. Lett.  2004,  6:  4223 
  • 18b Feldman AK. Colasson B. Fokin VV. Org. Lett.  2004,  6:  3897 
  • 19 Chittaboina S. Xie F. Wang Q. Tetrahedron Lett.  2005,  46:  2331 
  • 20 Smith NW. Polenz BP. Johnson SB. Dzyuba SV. Tetrahedron Lett.  2010,  51:  550 
  • 21 Krasiński A. Fokin VV. Sharpless KB. Org. Lett.  2004,  6:  1237 
  • 22 Epoxide 2 was prepared according to a reported procedure, see: Zhao S. Ghosh A. D’Andrea SV. Freeman JP. VonVoigtlander PF. Carter DB. Smith MW. Blinn JR. Szmuszkovicz J. Heterocycles  1994,  39:  163 
  • 23 Azide 5 was prepared according to a reported procedure, see: Alvarez SG. Alvarez MT. Synthesis  1997,  413 
  • 24 The bromide was prepared according to a reported procedure, see: Fürstner A. Domostoj MM. Scheiper B. J. Am. Chem. Soc.  2006,  128:  8087 
12

Crystal data for compound 3: C15H27NO3Si, MW = 297.47, triclinic, a = 5.7413(15), b = 11.872(3), c = 14.437(5) Å, α = 112.127(15), β = 97.874(14), γ = 98.495(10), V = 881.4(4) ų, d (calcd) = 1.121 g cm, T = 123(2) K, space group P-1, Z = 2. Data collected, 15714, R (int) 0.0185. The structure was solved by direct methods, and least-squares refinement of the model based on 5471 independent data [4982 reflections with I>2σ(I)] converged to a final R1 = 0.0321 and wR2 = 0.0885, respectively, S = 1.067. Selected geometric parameters (Å, ˚); N1-C1 1.4562(10), N1-C5 1.4646(10), N1-C11 1.3505(10), C1-C2 1.5242(11), C2-O2 1.4201(10), C2-C3 1.5432(11), C3-C4 1.5370(12), C3-C6 1.4706(12), C4-C5 1.5247(12), C6-C7 1.2068(13), C7-Si1 1.8339(11), C11-O2 1.2254(10), C11-O3 1.3441(10), O3-C12 1.4675(10), C11-N1-C1 118.77(7), C11-N1-C5 123.83(7), C1-N1-C5 114.35(6), N1-C1-C2 110.96(6), O1-C2-C1 111.74(6), O1-C2-C3 107.16(6), C1-C2-C3 111.00(6), C11-O3-C12 120.39(7), C6-C3-C4 112.00(7), C6-C3-C2 109.45(7), C4-C3-C2 109.88(6), C5-C4-C3 111.30(6), N1-C5-C4 109.66(6), C7-C6-C3 176.62(9), C6-C7-Si1 172.82(8), O2-C11-O3 123.90(7), O2-C11-N1 124.53(7), O3-C11-N1 111.54(7). CCDC 793221 contains the supplementary crystallographic data for 3. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.