Subscribe to RSS
DOI: 10.1055/s-0030-1259526
Influence of Geminal Disubstitution on Samarium Diiodide Induced Reductive Cyclizations of γ-Aryl Ketones
Publication History
Publication Date:
02 February 2011 (online)

Abstract
Geminal disubstitution at the alkyl chain of γ-aryl ketones significantly influences the efficacy of samarium diiodide induced cyclizations providing significantly higher yields. β,β-Disubstituted aryl ketones 11a-e and γ,γ-disubstituted aryl ketone 14 could be converted into the corresponding hexahydronaphthalene derivatives in good yields. On the other hand, α,α-disubstituted ketone 9 only gave the secondary alcohol 10 along with recovered starting material. Aryl ketones containing substituents with heteroatoms could also be cyclized in high yields and substrates such as 11d with sterically demanding cyclic substituents efficiently afforded spiro compounds.
Key words
samarium diiodide - cyclization - geminal disubstitution - γ-aryl ketone - hexahydronaphthalene
- For selected reviews, see:
- 1a
Molander GA.Harris CR. Chem. Rev. 1996, 96: 307Reference Ris Wihthout Link - 1b
Khan FA.Zimmer R.
J. Prakt. Chem. 1997, 339: 101Reference Ris Wihthout Link - 1c
Molander GA.Harris CR. Tetrahedron 1998, 54: 3321Reference Ris Wihthout Link - 1d
Krief A.Laval A.-M. Chem. Rev. 1999, 99: 745Reference Ris Wihthout Link - 1e
Steel PG. J. Chem. Soc., Perkin Trans. 1 2001, 2727Reference Ris Wihthout Link - 1f
Kagan HB. Tetrahedron 2003, 59: 10351Reference Ris Wihthout Link - 1g
Edmonds DJ.Johnston D.Procter DJ. Chem. Rev. 2004, 104: 3371Reference Ris Wihthout Link - 1h
Berndt M.Gross S.Hölemann A.Reissig H.-U. Synlett 2004, 422Reference Ris Wihthout Link - 1i
Gopalaiah K.Kagan HB. New J. Chem. 2008, 32: 607Reference Ris Wihthout Link - 1j
Rudkin IM.Miller LC.Procter DJ. Organomet. Chem. 2008, 34: 19Reference Ris Wihthout Link - 1k
Nicolaou KC.Ellery SP.Chen JS. Angew. Chem. Int. Ed. 2009, 48: 7140 ; Angew. Chem. 2009, 121, 7276Reference Ris Wihthout Link - 1l
Procter DJ.Flowers RA.Skrydstrup T. Organic Synthesis Using Samarium Diiodide: A Practical Guide RSC; Cambridge: 2010.Reference Ris Wihthout Link - 1m
Beemelmanns C.Reissig H.-U. Chem. Soc. Rev. 2011, 40: in press; DOI: 10.1039/C0CS00116CReference Ris Wihthout Link - 2a
Dinesh CU.Reissig H.-U. Angew. Chem. Int. Ed. 1999, 38: 789 ; Angew. Chem. 1999, 111, 874Reference Ris Wihthout Link - 2b
Nandanan E.Dinesh CU.Reissig H.-U. Tetrahedron 2000, 56: 4267Reference Ris Wihthout Link - 2c
Berndt M.Reissig H.-U. Synlett 2001, 1290Reference Ris Wihthout Link - 2d
Ohno H.Maeda S.-i.Okumura M.Wakayama R.Tanaka T. Chem. Commun. 2002, 316Reference Ris Wihthout Link - 2e
Ohno H.Wakayama R.Maeda S.-i.Iwasaki H.Okumura M.Iwata C.Mikamiyama H.Tanaka T. J. Org. Chem. 2003, 68: 5909Reference Ris Wihthout Link - 2f
Ohno H.Okumura M.Maeda S.-i.Iwasaki H.Wakayama R.Tanaka T. J. Org. Chem. 2003, 68: 7722Reference Ris Wihthout Link - 2g
Wefelscheid UK.Berndt M.Reissig H.-U. Eur. J. Org. Chem. 2008, 3635Reference Ris Wihthout Link - For related ketyl-aryl couplings, see:
- 3a
Kise N.Suzumoto T.Shono T. J. Org. Chem. 1994, 59: 1407Reference Ris Wihthout Link - 3b
Schmalz H.-G.Siegel S.Bats JW. Angew. Chem., Int. Ed. Engl. 1995, 34: 2383 ; Angew. Chem. 1995, 107, 2597Reference Ris Wihthout Link - 3c
Shiue J.-S.Lin M.-H.Fang J.-M. J. Org. Chem. 1997, 62: 4643Reference Ris Wihthout Link - 3d
Heimann J.Schäfer HJ.Fröhlich R.Wibbeling B. Eur. J. Org. Chem. 2003, 2919Reference Ris Wihthout Link - 4a
Berndt M.Hlobilova I.Reissig H.-U. Org. Lett. 2004, 6: 957Reference Ris Wihthout Link - 4b
Aulenta F.Berndt M.Brüdgam I.Hartl H.Sörgel S.Reissig H.-U. Chem. Eur. J. 2007, 13: 6047Reference Ris Wihthout Link - 4c
Wefelscheid UK.Reissig H.-U. Adv. Synth. Catal. 2008, 350: 65Reference Ris Wihthout Link - 4d
Wefelscheid UK.Reissig H.-U. Tetrahedron: Asymmetry 2010, 21: 1601Reference Ris Wihthout Link - 5a
Gross S.Reissig H.-U. Synlett 2002, 2027Reference Ris Wihthout Link - 5b
Kumaran RS.Brüdgam I.Reissig H.-U. Synlett 2008, 991Reference Ris Wihthout Link - 6a
Gross S.Reissig H.-U. Org. Lett. 2003, 5: 4305Reference Ris Wihthout Link - 6b
Blot V.Reissig H.-U. Synlett 2006, 2763Reference Ris Wihthout Link - 6c
Blot V.Reissig H.-U. Eur. J. Org. Chem. 2006, 4989Reference Ris Wihthout Link - 6d
Beemelmanns C.Reissig H.-U. Org. Biomol. Chem. 2009, 7: 4475Reference Ris Wihthout Link - 6e
Beemelmanns C.Blot V.Gross S.Lentz D.Reissig H.-U. Eur. J. Org. Chem. 2010, 2716Reference Ris Wihthout Link - 6f
Beemelmanns C.Reissig H.-U. Angew. Chem. Int. Ed. 2010, 49: 8021 ; Angew. Chem. 2010, 122, 8195Reference Ris Wihthout Link - 6g For a related electrochemical
cyclization, see:
Kise N.Mano T.Sakurai T. Org. Lett. 2008, 10: 4617Reference Ris Wihthout Link - 7
Aulenta F.Wefelscheid UK.Brüdgam I.Reissig H.-U. Eur. J. Org. Chem. 2008, 2325 - 8a For
a recent review, see:
Jung ME.Piizzi G. Chem. Rev. 2005, 105: 1735Reference Ris Wihthout Link - 8b
Mitchell L.Parkinson JA.Percy JM.Singh K. J. Org. Chem. 2008, 73: 2389Reference Ris Wihthout Link - 8c
Karaman R. Tetrahedron Lett. 2009, 50: 6083Reference Ris Wihthout Link - 8d
Kim H.Park Y.Hong J. Angew. Chem. Int. Ed. 2009, 48: 7577 ; Angew. Chem. 2009, 121, 7713Reference Ris Wihthout Link - 9
Berndt M. Dissertation Freie Universität Berlin; Germany: 2003. - 10 Compound 9 was
synthesized in a two-step procedure: 1. ethyl isobutyrate, phenethyl
iodide, LDA, HMPA, THF, -78 ˚C;
2. TMSCH2Li, pentane, 0 ˚C then MeOH,
55% (2 steps). For the second step, see:
Demuth M. Helv. Chim. Acta 1978, 61: 3136 - 12
Mahmud SA.Ansell MF. J. Chem. Soc., Perkin Trans. 1 1973, 2789
References and Notes
Conjugate addition of a benzyl cuprate to mesityl oxide furnished compound 11a in low yield: BnMgCl, CuCN, BF3˙OEt2, mesityl oxide, Et2O, -78 ˚C, 15%.
13The samarium ketyl is very likely in equilibrium with ketone 9 which was re-isolated. Reduction of the ketyl and subsequent protonation furnishes 10.
14General Procedure for Samarium Diiodide Induced Cyclizations of Aryl Ketones HMPA (18 equiv) was added to a previously prepared stock solution of SmI2 in THF (0.1 M, 3 equiv) under argon, and the solution was stirred for 20 min. During this time the solution turned from dark blue to dark violet. In a separate flask, the substrate (1 equiv) and t-BuOH (2 equiv) were dissolved in THF (10 mL) under argon. Argon was bubbled through the solution for 20 min. The substrate solution was then transferred with a syringe to the samarium diiodide solution. The mixture was stirred at r.t. until the color changed from violet to grey. Saturated aq NaHCO3 solution was added, the organic layer was separated, and the aqueous layer was extracted with Et2O (3×). The combined organic layers were washed with H2O and brine, dried with MgSO4, and the solvent was removed under reduced pressure to give the crude product, which still contained small amounts of HMPA. Flash chromatography on Al2O3 (activity grade 3) yielded the cyclization products.
15
Cyclization of
11a
According to the general procedure, the SmI2 solution
in THF (15.8 mL, 1.58 mmol), HMPA (1.66 mL, 9.47 mmol), 11a (0.100 g, 0.53 mmol), and t-BuOH (0.078 g, 1.05 mmol) afforded
after purification by flash chromatography (hexane-EtOAc,
9:1) compounds 12a and 13a as
a 83:17 mixture in 75% yield (76 mg).
Spectroscopic
Data for (1
S
*,8a
S
*)-1,3,3-Trimethyl-1,2,3,4,8,8a-hexahydronaphthalen-1-ol (12a)
¹H NMR
(700 MHz, CDCl3): δ = 0.93,
0.96. 1.26* (3 s, 3 H each, CH3), 1.28* (br
s, 1 H, OH), 1.50 (d, J = 13.4
Hz, 1 H, 2-H), 1.62 (dd, J = 2.2,
13.4 Hz, 1 H, 2-H), 1.88 (dd, J = 2.2, 12.6
Hz, 1 H, 4-H), 2.03 (d, J = 12.6
Hz, 1 H, 4-H), 2.23 (dd, J = 3.5,
13.0 Hz, 1 H, 8a-H), 2.49 (tdd, J = 3.1,
13.0, 19.5 Hz, 1 H, 8-H), 2.57 (m, 1 H, 8-H), 5.54 (tddd, J = 0.9, 3.1, 8.6,
9.5 Hz, 1 H, 7-H), 5.58-5.60 (m, 1 H, 5-H), 5.67 (dddd, J = 1.3, 3.1,
5.4, 9.5 Hz, 1 H, 6-H) ppm; * overlapping signals. ¹³C
NMR (176 MHz, CDCl3): δ = 22.4
(t, C-8), 23.2, 26.6 (2 q, CH3), 32.8 (s, C-3) 33.9 (q,
CH3), 46.9 (d, C-8a), 48.7 (t, C-4), 55.9 (t, C-2), 74.9
(s, C-1), 118.9, 122.2, 123.5 (3 d, C-5, C-6, C-7), 136.5 (s, C-4a)
ppm.
Spectroscopic Data for (1
S
*,8a
S
*)-1,3,3-Trimethyl-1,2,3,4,6,8a-hexahydronaphthalen-1-ol (13a)
¹H NMR
(700 MHz, CDCl3): δ = 0.90,
0.98, 1.12 (3 s, 3 H each, CH3), 1.52 (br s, 1 H, OH),
1.59 (d, J = 13.2
Hz, 1 H, 2-H), 1.68 (dd, J = 2.2,
13.2 Hz, 1 H, 2-H), 1.87, 1.92 (AB part of an ABX system, J
AB = 13.0
Hz, J
BX = 2.2
Hz, 1 H each, 4-H), 2.62 (mc, 1 H, 8a-H), 2.67-2.71
(m, 2 H, 6-H), 5.47 (X part, mc, 1 H, 5-H), 5.85 (mc,
2 H, 7-H, 8-H) ppm. ¹³C NMR (176 MHz,
CDCl3): δ = 24.9,
26.2 (2 q, CH3), 27.0 (t, C-6), 32.2 (s, C-3), 33.9 (q,
CH3), 48.7 (t, C-4), 49.0 (d, C-8a), 55.3 (t, C-2), 74.5
(s, C-1), 120.1 (d, C-5), 124.3, 125.6 (2 d, C-7, C-8), 141.6 (s,
C-4a) ppm. Data from mixture: IR (film): ν = 3365
(OH), 2950-2830 (CH), 1630 (C=C) cm-¹.
HRMS (EI, 80 eV, 60 ˚C): m/z calcd
for C13H20O [M]+:
192.1514; found: 192.1513. Anal. Calcd for C13H20O
(192.1): C, 81.20; H, 10.48; found: C, 80.93; H, 10.31.
Cyclization of 14
According to
the general procedure, the SmI2 solution in THF (15.8
mL, 1.58 mmol), HMPA (1.66 mL, 9.47 mmol), 14 (0.100
g, 0.53 mmol), and t-BuOH (0.078 g, 1.05
mmol) afforded after purification by flash chromatography (hexane-EtOAc,
9:1) compounds 15, 16,
and 17 as a 74:19:7 mixture in 70% yield
(71 mg). Separation by HPLC yielded pure samples.
Analytical Data for (1
S
*,8a
S
*)-1,4,4-Trimethyl-1,2,3,4,8,8a-hexahydronaphthalen-1-ol (15)
Colorless solid; mp 50-52 ˚C. ¹H
NMR (700 MHz, CDCl3): δ = 1.09,
1.14, 1.17 (3 s, 3 H each, CH3), 1.35 (dt, J = 4.5, 13.6
Hz, 1 H, 3-H), 1.46* (br s, 1 H, OH), 1.47* (ddd, J = 2.9, 4.4,
13.6 Hz, 1 H, 3-H), 1.60 (ddd, J = 2.9,
4.4, 13.6 Hz, 1 H, 2-H), 1.77 (dt, J = 4.5,
13.6 Hz, 1 H, 2-H), 2.47 (tdd, J = 3.1,
13.8, 20.0 Hz, 1 H, 8-H), 2.61-2.67 (m, 2 H, 8-H, 8a-H),
5.52 (dddd, J = 0.8,
3.3, 5.0, 9.0 Hz, 1 H, 7-H), 5.64 (br d, J = 5.7
Hz, 1 H, 5-H), 5.69 (dddd, J = 1.4,
3.0, 5.7, 9.0 Hz, 1 H, 6-H) ppm; * overlapping signals. ¹³C
NMR (176 MHz, CDCl3): δ = 20.4
(q, CH3), 22.7 (t, C-8), 26.2, 28.5 (2 q, CH3),
35.9 (s, C-4), 38.5, 38.8 (2 t, C-3, C-2), 42.4 (d, C-8a), 75.6
(s, C-1), 115.2 (d, C-5), 122.2 (d, C-6), 123.1 (d, C-7), 145.0
(s, C-4a) ppm. IR (film): ν = 3375
(OH), 2970-2865 (=CH, CH), 1665 (C=C) cm-¹.
Analytical Data for (1
S
*,8a
S
*)-1,4,4-Trimethyl-1,2,3,4,6,8a-hexahydronaphthalen-1-ol (16)
¹H NMR
(700 MHz, CDCl3): δ = 1.03,
1.08. 1.09 (3 s, 3 H each, CH3), 1.32 (dt, J = 4.2, 13.8
Hz, 1 H, 3-H), 1.43 (ddd, J = 2.9,
4.4, 13.8 Hz, 1 H, 3-H), 1.55 (br s, 1 H, OH), 1.63 (ddd, J = 2.9, 4.2,
12.9 Hz, 1 H, 2-H), 1.86 (ddd, J = 2.9,
4.2, 12.9 Hz, 1 H, 2-H), 2.66-2.70 (m, 2 H, 6-H), 2.97-3.01
(m, 1 H, 8a-H), 5.47-5.51 (m, 1 H, 5-H), 5.81-5.85
(m, 1 H, 7-H), 5.87 (tdd, J = 1.8,
3.3, 10.2 Hz, 1 H, 8-H) ppm. ¹³C NMR (176
MHz, CDCl3): δ = 21.5,
25.7 (2 q, CH3), 27.1 (t, C-6), 28.7 (q, CH3),
34.4 (s, C-4), 37.8, 38.0 (2 t, C-2, C-3), 44.7 (d, C-8a), 71.0
(s, C-1), 116.2 (d, C-5), 124.5, 125.4 (2 d,
C-8, C-7),
142.2 (s, C-4a) ppm. IR (film): ν = 3410
(OH), 2960-2810 (=CH, CH), 1650 (C=C)
cm-¹. HRMS (ESI-TOF-MS): m/z calcd for C13H20ONa [M + Na]+:
215.1406; found: 215.1405.
Analytical
Data for 1,4,4-Trimethyl-1,2,3,4-tetrahydronaphthalen-1-ol (17)
Colorless solid; mp 68-70 ˚C. ¹H
NMR (700 MHz, CDCl3): δ = 1.30,
1.31, 1.55 (3 s, 3 H each, CH3), 1.68 (br s, 1 H, OH),
1.71-1.83, 1.96-1.99 (2 m, 4 H, 2-H, 3-H), 7.18-7.24 (m,
2 H, Ar), 7.29-7.31 (m, 1 H, Ar), 7.58-7.59 (m,
1 H, Ar) ppm. ¹³C NMR (176 MHz, CDCl3): δ = 30.8,
31.5, 31.7 (3 q, CH3), 34.06 (s, C-4), 35.9, 36.1 (2
t, CH2), 71.0 (s, C-1), 126.0, 126.1, 126.4, 127.4 (4
d, Ar), 142.0, 144.7 (2 s, Ar) ppm. IR (film): ν = 3385
(OH), 2960-2860 (=CH, CH), 1660 (C=C)
cm-¹. HRMS (ESI-TOF-MS): m/z calcd for C13H18ONa [M + Na]+:
213.1250; found: 213.1250.
At the moment it is more likely that the isolation of isomeric mixtures is the result of an unselective kinetically controlled protonation. Since equilibration experiments with the products isolated are so far not fully conclusive, further investigation of this problem is required.