Subscribe to RSS
DOI: 10.1055/s-0030-1259318
Chiral Brønsted Acids and Their Calcium Salts in Catalytic Asymmetric Mannich Reactions of Cyclic 1,3-Diketones
Publication History
Publication Date:
13 January 2011 (online)

Abstract
Asymmetric calcium-catalyzed direct Mannich reactions of 1,3-dicarbonyl compounds with imines have been developed. The reactions proceed under mild conditions and provide the corresponding products with high enantiomeric excess.
Key words
Mannich reaction - organocatalysis - calcium - BINOL phosphoric acid - amino acid
- For reviews on asymmetric Mannich reactions, see:
- 1a
Arend M.Westermann B.Risch N. Angew. Chem. Int. Ed. 1998, 37: 1044 - 1b
Kobayashi S.Ishitani H. Chem. Rev. 1999, 99: 1069 - 1c
Jarvo ER.Miller SJ. Tetrahedron 2002, 58: 2481 - 1d
Cordova A. Acc. Chem. Res. 2004, 37: 102 - 1e
List B. Acc. Chem. Res. 2004, 37: 548 - 1f
Friestad GK.Mathies AK. Tetrahedron 2007, 63: 2541 - 1g
Ting A.Schaus SE. Eur. J. Org. Chem. 2007, 5797 - 1h
Verkade JMM.van Hemert LJC.Quaedflieg PJLM.Rutjes FPJT. Chem. Soc. Rev. 2008, 37: 29 - For reviews on chiral BINOL-derived phosphoric acid diesters, see:
- 2a
Akiyama T.Itoh J.Fuchibe K. Adv. Synth. Catal. 2006, 348: 999 - 2b
Akiyama T. Chem. Rev. 2007, 107: 5744 - 2c
Kampen D.Reisinger CM.List B. Top. Curr. Chem. 2009, 291: 395 - 2d
Terada M. Chem. Commun. 2008, 4097 - 2e
Terada M. Bull. Chem. Soc. Jpn. 2010, 83: 101 - 2f
Terada M. Synthesis 2010, 1929 - For selected examples, see:
- 3a
Storer RI.Carrera DE.Ni Y.MacMillan DWC. J. Am. Chem. Soc. 2006, 128: 84 - 3b
Wanner MJ.van der Haas RNS.de Cuba KR.van Maarseveen JH.Hiemstra H. Angew. Chem. Int. Ed. 2007, 46: 7485 - 3c
Rowland EB.Rowland GB.Rivera-Otero E.Antilla JC. J. Am. Chem. Soc. 2007, 129: 12084 - 3d
Baudequin C.Zamfir A.Tsogoeva SB. Chem. Commun. 2008, 4637 - 3e
Ackermann L.Althammer A. Synlett 2008, 995 - 3f
Cheng X.Goddard R.Buth G.List B. Angew. Chem. Int. Ed. 2008, 47: 5079 - 3g
Liu H.Dagousset G.Masson G.Retailleau P.Zhu J. J. Am. Chem. Soc. 2009, 131: 4598 - 3h
Sun F.-L.Zeng M.Gu Q.You S.-L. Chem. Eur. J. 2009, 15: 8709 - 3i
Terada M.Machioka K.Sorimachi K. Angew. Chem. Int. Ed. 2009, 48: 2553 - 3j
Akiyama T.Katoh T.Mori K. Angew. Chem. Int. Ed. 2009, 48: 4226 - 3k
Yue T.Wang M.-X.Wang D.-X.Masson G.Zhu J. Angew. Chem. Int. Ed. 2009, 48: 6717 - 3l
Lu M.Zhu D.Lu Y.Zeng X.Tan B.Xu Z.Zhong G. J. Am. Chem. Soc. 2009, 131: 4562 - 3m
Terada M.Toda Y. J. Am. Chem. Soc. 2009, 131: 6354 - 3n
Zhang Q.-W.Fan C.-A.Zhang H.-J.Tu Y.-Q.Zhao Y.-M.Gu P.Chen Z.-M. Angew. Chem. Int. Ed. 2009, 48: 8572 - 3o
Zeng X.Zeng X.Xu Z.Lu M.Zhong G. Org. Lett. 2009, 11: 3036 - 3p
Müller S.List B. Angew. Chem. Int. Ed. 2009, 48: 9975 - 3q
Ube H.Shimada N.Terada M. Angew. Chem. Int. Ed. 2010, 49: 1858 - 3r
Lv J.Li X.Zhong L.Luo S.Cheng J.-P. Org. Lett. 2010, 12: 1096 - 3s
Cox DJ.Smith MD.Fairbanks AJ. Org. Lett. 2010, 12: 1452 - 3t
Bergonzini G.Gramigna L.Mazzanti A.Fochi M.Bernardi L.Ricci A. Chem. Commun. 2010, 46: 327 - For selected examples from our group, see:
- 4a
Rueping M.Sugiono E.Azap C.Theissmann T.Bolte M. Org. Lett. 2005, 7: 3781 - 4b
Rueping M.Sugiono E.Azap C. Angew. Chem. Int. Ed. 2006, 45: 2617 - 4c
Rueping M.Ieawsuwan W.Antonchick AP.Nachtsheim BJ. Angew. Chem. Int. Ed. 2007, 46: 2097 - 4d
Rueping M.Sugiono E.Moreth SA. Adv. Synth. Catal. 2007, 349: 759 - 4e
Rueping M.Sugiono E.Theissmann T.Kuenkel A.Köckritz A.Pews-Davtyan A.Nemati N.Beller M. Org. Lett. 2007, 9: 1065 - 4f
Rueping M.Nachtsheim BJ.Moreth SA.Bolte M. Angew. Chem. Int. Ed. 2008, 47: 593 - 4g
Rueping M.Antonchick AP. Org. Lett. 2008, 10: 1731 - 4h
Rueping M.Theissmann T.Kuenkel A.Koenigs RM. Angew. Chem. Int. Ed. 2008, 47: 6798 - 4i
Rueping M.Antonchick AP.Sugiono E.Grenader K. Angew. Chem. Int. Ed. 2009, 48: 908 - 4j
Rueping M.Sugiono E.Steck A.Theissmann T. Adv. Synth. Catal. 2010, 352: 281 - 4k
Rueping M.Tato F.Schoepke FR. Chem. Eur. J. 2010, 16: 2688 - 5a
Akiyama T.Itoh J.Yokota K.Fuchibe K. Angew. Chem. Int. Ed. 2004, 43: 1566 - 5b
Yamanaka M.Itoh J.Fuchibe K.Akiyama T. J. Am. Chem. Soc. 2007, 129: 6756 - 5c
Itoh J.Fuchibe K.Akiyama T. Synthesis 2008, 1319 - 5d
Akiyama T.Katoh T.Mori K.Kanno K. Synlett 2009, 1664 - 6a
Uraguchi D.Terada M. J. Am. Chem. Soc. 2004, 126: 5356 - 6b
Gridnev ID.Kouchi M.Sorimachi K.Terada M. Tetrahedron Lett. 2007, 48: 497 - 6c
Terada M.Machioka K.Sorimachi K. Angew. Chem. Int. Ed. 2006, 45: 2254 - 6d
Terada M.Machioka K.Sorimachi K.
J. Am. Chem. Soc. 2007, 129: 10336 - 6e
Terada M.Tanaka H.Sorimachi K. Synlett 2008, 1661 - 6f
Hatano M.Moriyama K.Maki T.Ishihara K. Angew. Chem. Int. Ed. 2010, 49: 3823 - 7a
Guo Q.-X.Liu H.Guo C.Luo S.-W.Gu Y.Gong L.-Z. J. Am. Chem. Soc. 2007, 129: 3790 - 7b
Dagousset G.Drouet F.Masson G.Zhu J. Org. Lett. 2009, 11: 5546 - 8a
Akiyama T.Honma Y.Itoh J.Fuchibe K. Adv. Synth. Catal. 2008, 350: 399 - 8b
Sickert M.Schneider C. Angew. Chem. Int. Ed. 2008, 47: 3631 - 8c
Giera DS.Sickert M.Schneider C. Synthesis 2009, 3797 - 8d
Sickert M.Abels F.Lang M.Sieler J.Birkemeyer C.Schneider C. Chem. Eur. J. 2010, 16: 2806 - For selected recent examples of organocatalytic asymmetric direct Mannich reactions, see:
- 9a
Lou S.Taoka BM.Ting A.Schaus SE. J. Am. Chem. Soc. 2005, 127: 11256 - 9b
Enders D.Grondal C.Vrettou M.Raabe G. Angew. Chem. Int. Ed. 2005, 44: 4079 - 9c
Ting A.Lou S.Schaus SE. Org. Lett. 2006, 8: 2003 - 9d
Enders D.Grondal C.Vrettou M. Synthesis 2006, 3597 - 9e
Zhao G.-L.Córdova A. Tetrahedron Lett. 2006, 47: 7417 - 9f
Hasegawa A.Naganawa Y.Fushimi M.Ishihara K.Yamamoto H. Org. Lett. 2006, 8: 3175 - 9g
Tillman AL.Dixon DJ. Org. Biomol. Chem. 2007, 5: 606 - 9h
Cheng L.Wu X.Lu Y. Org. Biomol. Chem. 2007, 5: 1018 - 9i
Marianacci O.Micheletti G.Bernardi L.Fini F.Fochi M.Pettersen D.Sgarzani V.Ricci A. Chem. Eur. J. 2007, 13: 8338 - 9j
Ramasastry SSV.Zhang H.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2007, 129: 288 - 9k
Sukach VA.Golovach NM.Pirozhenko VV.Rusanov EB.Vovk MV. Tetrahedron: Asymmetry 2008, 19: 761 - 9l
Kawanaka Y.Phillips EM.Scheidt KA.
J. Am. Chem. Soc. 2009, 131: 18028 - 9m
Pan Y.Zhao Y.Ma T.Yang Y.Liu H.Jiang Z.Tan C.-H. Chem. Eur. J. 2010, 16: 779 - 9n
Ayaz M.Westermann B. Synlett 2010, 1489 - 10a
Rueping M.Azap C. Angew. Chem. Int. Ed. 2006, 45: 7832 - 10b
Rueping M.Sugiono E.Schoepke FR. Synlett 2007, 1441 - 10c
Rueping M.Lin MY. Chem. Eur. J. 2010, 16: 4169 - For selected examples of chiral Ca(II) salts in catalysis, see:
- 11a
Suzuki T.Yamagiwa N.Matsuo Y.Sakamoto S.Yamaguchi K.Shibasaki M.Noyori R. Tetrahedron Lett. 2001, 42: 4669 - 11b
Kumaraswamy G.Sastry MNV.Jena N. Tetrahedron Lett. 2001, 42: 8515 - 11c
Saito S.Tsubogo T.Kobayashi S. J. Am. Chem. Soc. 2007, 129: 5364 - 11d
Tsubogo T.Saito S.Seki K.Yamashita Y.Kobayashi S. J. Am. Chem. Soc. 2008, 130: 13321 - 11e
Kobayashi S.Tsubogo T.Saito S.Yamashita Y. Org. Lett. 2008, 10: 807 - 11f
Poisson T.Yamashita Y.Kobayashi S. J. Am. Chem. Soc. 2010, 132: 7890 - 11g
Poisson T.Tsubogo T.Yamashita Y.Kobayashi S. J. Org. Chem. 2010, 75: 963 - For our studies on chiral calcium salts in catalysis, see:
- 12a
Rueping M.Theissmann T.Kuenkel A.Koenigs RM. Angew. Chem. Int. Ed. 2008, 47: 6798 - 12b
Rueping M.Koenigs RM.Atodiresei I. Chem. Eur. J. 2010, 16: 9350 - 12c
Rueping M.Nachtsheim BJ.Koenigs RM.Ieawsuwan W. Chem. Eur. J. 2010, 16: 13116 - 13a
Adair G.Mukherjee S.List B. Aldrichimica Acta 2008, 41: 31 - 13b
Klussmann M.Ratjen L.Hoffmann S.Wakchaure V.Goddard R.List B. Synlett 2010, 2189
References and Notes
The absolute configuration of the products was obtained from X-ray crystal structure analysis of compound 6c. On the basis of this structure the absolute configuration was assigned to be the S configuration.
15
General Procedure
for Direct Mannich Reaction: In a typical experiment pyrone 2 or 1,3-cyclohexadione (5;
1.0 equiv), aldimine 3 (1.5 equiv), and
the calcium catalyst (5 mol%) were suspended in Bu2O
in a screw-capped vial and the resulting mixture was allowed to
stir at -40 ˚C for 60-72 h. Purification
of the crude product by column chromatography on silica gel afforded
the corresponding product 4 or 6.
(
R
)-
tert
-Butyl(4-hydroxy-6-methyl-2-oxo-2
H
-pyran-3-yl)(
p
-tolyl)methylcarbamate (4a): Isolated by column chromatography
(CH2Cl2-acetone, 10:1) as a white
solid in 49% yield and 88% ee. The ee was determined
by HPLC using Chiralpak AD-H column [(n-hexane-i-PrOH, 90:10), flow rate: 0.6 mL/min;
major enantiomer: t
R = 29.59
min; minor enantiomer: t
R = 22.07
min]; [α]D -6.1
(c = 1.84, CH2Cl2);
mp 173-175 ˚C. ¹H NMR (400
MHz, CDCl3): δ = 7.22 (d, J = 8.0 Hz, 2 H), 7.02 (d, J = 8.0 Hz, 2 H), 6.79 (d, J = 12.0 Hz, 1 H), 6.05 (d, J = 12.0 Hz, 1 H), 5.88 (s,
1 H), 3.41 (s, 1 H), 2.23 (s, 3 H), 2.07 (s, 3 H), 1.39 (s, 9 H).
¹³C
NMR (100 MHz, CDCl3): δ = 166.10, 164.94,
161.74, 157.40, 137.67, 136.82, 129.09, 126.12, 102.60, 100.84, 81.11,
28.48, 21.05, 19.85. IR (KBr): 3359, 2980, 1700, 1651, 1530, 1161,
884, 783 cm-¹. MS (EI): m/z (%) = 345
(2) [M+], 339 (30), 251 (41),
230 (58), 200(100), 145 (64), 77 (92).
(
R
)-
tert
-Butyl(2-hydroxy-6-oxocyclohex-1-enyl)(
p
-tolyl)-methylcarbamate (6a): Isolated by column chromatography
(CH2Cl2-acetone, 10:1) as a white
solid in 47% yield and 73% ee. The ee was determined
by HPLC using Chiralpak AD-H column [(n-hexane-i-PrOH, 92:8), flow rate: 0.6 mL/min;
major enantiomer: t
R = 20.23
min; minor enantiomer: t
R = 17.98
min]; [α]D +4.43
(c = 0.75, CH2Cl2);
mp 132-134 ˚C. ¹H NMR (400
MHz, CDCl3): δ = 10.60 (br s, 1 H),
7.19 (d, J = 8.0 Hz, 2 H), 7.00
(d, J = 8.0 Hz, 2 H), 6.82 (d, J = 9.9 Hz, 1 H), 5.99 (d, J = 9.9 Hz, 1 H), 2.45 (t, J = 6.0 Hz, 2 H), 2.22 (s, 5
H), 1.79-1.89 (m, 2 H), 1.35 (s, 9 H). ¹³C
NMR (100 MHz, CDCl3): δ = 173.73, 157.32,
136.00, 128.80, 125.92, 116.22, 80.60, 48.78, 37.02, 29.64, 28.54,
21.15, 20.62. IR (KBr): 3455, 2922, 1710, 1490, 1165, 1025, 779
cm-¹. MS (EI): m/z (%) = 331 (56) [M+],
266 (58), 239 (92), 194 (100), 116 (58), 78 (52), 70 (98).