Subscribe to RSS
DOI: 10.1055/s-0030-1259296
Organocatalyzed Michael Addition Reaction by Novel (2R,3aS,7aS)-Octa-hydroindole-2-carboxylic Acid, a New Fused Proline
Publication History
Publication Date:
04 January 2011 (online)

Abstract
We present here the results obtained in our study on organocatalytic enantioselective Michael addition reaction of acetone to different nitroolefines using (2R,3aS,7aS)-octahydroindole-2-carboxylic acid [(R,S,S)-Oic] as a new and suitable catalyst for this process. Computational calculations support the results obtained with (R,S,S)-Oic versus its diastereomeric form (S,S,S)-Oic. The final products are obtained in good yields and moderate enantioselectivities (up to 58% ee).
Key words
Michael addition - nitroolefines - ketones - Oic - organocatalysis - enantioselectivity
- 1a
Berkessel A.Gröger H. In Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2004.Reference Ris Wihthout Link - 1b
Enantioselective
Organocatalysis
Dalko PI. Wiley-VCH; Weinheim: 2007.Reference Ris Wihthout Link - 1c
Organocatalysis
Reetz MT.List B.Jaroch S.Weinmann H. Springer; Berlin: Heidelberg: 2008.Reference Ris Wihthout Link - For reviews on asymmetric Michael addition reactions, see:
- 2a
Sibi MP.Manyem S. Tetrahedron 2000, 56: 8033Reference Ris Wihthout Link - 2b
Krause N.Hoffmann-Röder A. Synthesis 2001, 171Reference Ris Wihthout Link - 2c
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877Reference Ris Wihthout Link - 2d
Christoffers A.Baro A. Angew. Chem. Int. Ed. 2003, 42: 1688Reference Ris Wihthout Link - 2e
Christoffers J.Koripelly G.Rosiak A.Rössle M. Synthesis 2007, 1279Reference Ris Wihthout Link - 2f
Enders D.Saint-Dizier A.Lannou MI.Lenzen A. Eur. J. Org. Chem. 2006, 29Reference Ris Wihthout Link - 2g
Enders D.Luttgen K.Narine AA. Synthesis 2007, 959Reference Ris Wihthout Link - For reviews on 1,4-addition reactions catalyzed by organocatalysts, see:
- 3a
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701Reference Ris Wihthout Link - 3b
Almaşi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299Reference Ris Wihthout Link - 3c
Vicario JL.Badía D.Carrillo L. Synthesis 2007, 2065Reference Ris Wihthout Link - 3d
Sulzer-Mossé S.Alexakis A. Chem. Commun. 2007, 3123Reference Ris Wihthout Link - 3e
Enders D.Wang C.Liebich JX. Chem. Eur. J. 2009, 15: 11058Reference Ris Wihthout Link - 4 For a recent review concerning the
organocatalytic addition of ketones to nitroalkenes, see:
Roca-López D.Sádaba D.Delso I.Herrera RP.Tejero T.Merino P. Tetrahedron: Asymmetry 2010, 21: 2561 - 5a
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2001.Reference Ris Wihthout Link - 5b
Ballini R.Petrini M. Tetrahedron 2004, 60: 1017Reference Ris Wihthout Link - For pioneering examples, see:
- 6a
List B.Pojarliev PH.Martin HJ. Org. Lett. 2001, 3: 2423Reference Ris Wihthout Link - 6b
Betancort JM.Barbas CF. Org. Lett. 2001, 3: 3737Reference Ris Wihthout Link - 6c
Enders D.Seki A. Synlett 2002, 26Reference Ris Wihthout Link - For selected examples, see:
- 7a
Huang H.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 7170Reference Ris Wihthout Link - 7b
Yalalov DA.Tsogoeva SB.Schmatz S. Adv. Synth. Catal. 2006, 348: 826Reference Ris Wihthout Link - 7c
Gun Q.Guo X.-T.Wu X.-Y. Tetrahedron 2009, 65: 5265Reference Ris Wihthout Link - 7d
Peng L.Xu X.-Y.Wang L.-L.Huang J.Bai J.-F.Huang Q.-C.Wang L.-X. Eur. J. Org. Chem. 2010, 2978Reference Ris Wihthout Link - 8
Sayago FJ.Jiménez AI.Cativiela C. Tetrahedron: Asymmetry 2007, 18: 2358 - 9
Sayago FJ.Calaza MI.Jiménez AI.Cativiela C. Tetrahedron 2008, 64: 84 - For selected examples, see:
- 10a
Hurst M.Jarvis B. Drugs 2001, 61: 867Reference Ris Wihthout Link - 10b
Reissmann S.Imhof D. Curr. Med. Chem. 2004, 11: 2823Reference Ris Wihthout Link - 10c
Gass J.Khosla C. Cell. Mol. Life Sci. 2007, 64: 345Reference Ris Wihthout Link - For selected examples, see:
- 11a
Bellemère G.Vaudry H.Morain P.Jégou S. J. Neuroendocrinol. 2005, 17: 306Reference Ris Wihthout Link - 11b
Curran MP.McCormack PL.Simpson D. Drugs 2006, 66: 235Reference Ris Wihthout Link - 11c
Bas M.Bier H.Greve J.Kojda G.Hoffmann TK. Allergy 2006, 61: 1490Reference Ris Wihthout Link - 11d
Sorbera LA.Fernández-Forner D.Bayes M. Drug Future 2006, 31: 101Reference Ris Wihthout Link - For reviews on enamine catalysis, see:
- 12a
List B. Synlett 2001, 1675Reference Ris Wihthout Link - 12b
List B. Tetrahedron 2002, 58: 5573Reference Ris Wihthout Link - 12c
List B. Chem. Commun. 2006, 819Reference Ris Wihthout Link - 12d
Marigo M.Jørgensen KA. Chem. Commun. 2006, 2001Reference Ris Wihthout Link - 12e
Mukherjee S.Yang J.-W.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471Reference Ris Wihthout Link - 12f
Pihko PM.Majander I.Erkilä A. Top. Curr. Chem. 2010, 291: 29Reference Ris Wihthout Link - 13 During the development of our project,
a novel application of structure 4 analogue
as organocatalyst has been reported:
Luo R.-S.Weng J.Ai H.-B.Lu G.Chan ASC. Adv. Synth. Catal. 2009, 351: 2449 - 14 For the single reported example
of 4 as suitable organocatalyst, see:
Tang X.Liégault B.Renaud J.-L.Bruneau C. Tetrahedron: Asymmetry 2006, 17: 2187 - 16 For the single reported example
of 2 as suitable organocatalyst, see:
Vignola N.List B. J. Am. Chem. Soc. 2004, 126: 450 - 17
Flores-Ortega A.Jiménez AI.Cativiela C.Nussinov R.Alemán C.Casanovas J. J. Org. Chem. 2008, 73: 3418 - For scarce reported examples of 3 as suitable organocatalyst, see:
- 18a
Kunz RK.MacMillan DWC. J. Am. Chem. Soc. 2005, 127: 3240Reference Ris Wihthout Link - 18b
Hartikka A.Arvidsson PI. J. Org. Chem. 2007, 72: 5874Reference Ris Wihthout Link - 19a
Mitchell CET.Cobb AJA.Ley SV. Synlett 2005, 611Reference Ris Wihthout Link - 19b
Huang H.Jacobsen EN. J. Am. Chem. Soc. 2006, 128: 7170Reference Ris Wihthout Link - 19c
Laars M.Ausmess K.Uudesmaa M.Tamm T.Kanger T.Lopp M. J. Org. Chem. 2009, 74: 3772Reference Ris Wihthout Link - 19d
Tan B.Zeng X.Lu Y.Chua PJ.Zhong G. Org. Lett. 2009, 11: 1927Reference Ris Wihthout Link - 20a
Wang J.Li H.Lou B.Zu L.Guo H.Wang W. Chem. Eur. J. 2006, 12: 4321Reference Ris Wihthout Link - 20b
Arno M.Zaragoza RJ.Domingo LR. Tetrahedron: Asymmetry 2007, 18: 157Reference Ris Wihthout Link - 20c
Okuyama Y.Nakano H.Watanabe Y.Makabe M.Takeshita M.Uwai K.Kabuto C.Kwon E. Tetrahedron Lett. 2009, 50: 193Reference Ris Wihthout Link - 21
Wiesner M.Upert G.Angelici G.Wennemers H. J. Am. Chem. Soc. 2010, 132: 6 - 22
Xue F.Zhang S.Duan W.Wang W. Adv. Synth. Catal. 2008, 250: 2194 - 23
Evans DA.Seidel D. J. Am. Chem. Soc. 2005, 127: 9958 - 24 All calculations were carried
out with the Gaussian 09 suite of programs:
Frisch MJ.Trucks GW.Schlegel HB.Scuseria GE.Robb MA.Cheeseman JR.Scalmani G.Barone V.Mennucci B.Petersson GA.Nakatsuji H.Caricato M.Li X.Hratchian HP.Izmaylov AF.Bloino J.Zheng G.Sonnenberg JL.Hada M.Ehara M.Toyota K.Fukuda R.Hasegawa J.Ishida M.Nakajima T.Honda Y.Kitao O.Nakai H.Vreven T.Montgomery JA.Peralta JE.Ogliaro F.Bearpark M.Heyd JJ.Brothers E.Kudin KN.Staroverov VN.Kobayashi R.Normand J.Raghavachari K.Rendell A.Burant JC.Iyengar SS.Tomasi J.Cossi M.Rega N.Millam NJ.Klene M.Knox JE.Cross JB.Bakken V.Adamo C.Jaramillo J.Gomperts R.Stratmann RE.Yazyev O.Austin AJ.Cammi R.Pomelli C.Ochterski JW.Martin RL.Morokuma K.Zakrzewski VG.Voth GA.Salvador P.Dannenberg JJ.Dapprich S.Daniels AD.Farkas .Foresman JB.Ortiz JV.Cioslowski J.Fox DJ. Gaussian 09, Revision A.1 Gaussian, Inc.; Wallingford CT: 2009. - Calculations were carried out by fully optimizing transition structures at the B3LYP/6-31+G(d,p) level and then performing single-point calculations at M062X/6-311+G(d,p) level with correction for solvent using Tomasi’s polarizable continuum model (PCM) for DMSO level. The use of M062X functional was chosen following recent studies carried out by Houk and Papai. See:
- 26a
Rokob TA.Hamza A.Papai I. Org. Lett. 2007, 9: 4279Reference Ris Wihthout Link - 26b
Wheeler SE.Moran A.Pieniazek SZ.Houk KN. J. Phys. Chem. 2009, 113: 10376Reference Ris Wihthout Link
References and Notes
Typical Experimental
Procedure
To a suspension of catalyst (10 mol%)
and nitroalkene (0.5 mmol) in DMF (4 mL), acetone (13.5 mmol, 1
mL) was added, and the resulting mixture was stirred at 25 ˚C
for the time indicated in Table
[³]
.
After that time the reaction was quenched with sat. NH4Cl
(2 × 20 mL), the layers were separated
and the aqueous layer extracted with EtOAc (3 × 25
mL). The combined organic layers were washed with brine (2 × 20
mL), dried (MgSO4), filtered, and rotatory evaporated
to give a residue which was purified by flash chromatography using
hexane-EtOAc (7:3) as an eluent.
Selected
Spectral Data
Compound 8j:
Following the general procedure, compound 8j was
obtained after 10 d at r.t. as a white solid in 68% yield; mp
135-136 ˚C. ¹H NMR (400 MHz,
CD3OD): δ = 2.05
(s, 3 H), 2.88 (dd, J = 2.6,
7.2 Hz, 2 H), 3.82-3.89 (m, 1 H), 4.57 (dd, J = 9.2, 12.4
Hz, 1 H), 4.70 (dd, J = 6.3,
12.4 Hz, 1 H), 6.70-6.74 (m, 2 H), 7.06-7.10 (m,
2 H). ¹³C NMR (100 MHz, CD3OD): δ = 30.4,
40.0, 47.2, 80.9, 116.5, 129.8, 131.5, 157.9, 208.8. The ee of the
product was determined by HPLC using a Daicel Chiralpak IA column
(n-hexane-i-PrOH = 90:10,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 29.1
min; t
R(minor) = 26.9
min. HRMS: m/z calcd for C11H13NNaO4:
246.0737; found: 246.0728 [M+ + Na]. [α]D
²² 7.3
(c 1.0, MeOH, 33% ee).
Compound 8k: Following the general procedure, compound 8k was obtained after 10 d at r.t. as a
yellow oil in 74% yield; mp 131-133 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 2.11
(s, 3 H), 2.88 (d, J = 7.1
Hz, 2 H), 3.96 (q, J = 7.1
Hz, 1 H), 4.55 (dd, J = 7.8,
12.2 Hz, 1 H), 4.65 (dd, J = 6.8,
12.2 Hz, 1 H), 5.02 (s, 1 H), 6.91-6.95 (m, 2 H), 7.12-7.15
(m, 2 H), 7.31-7.44 (m, 5 H). ¹³C
NMR (100 MHz, CDCl3): δ = 30.3,
38.3, 46.2, 70.0, 79.6, 115.2, 127.4, 128.0, 128.4, 128.5, 130.9, 136.7,
158.3, 205.5. The ee of the product was determined by HPLC using
a Daicel Chiralpak IA column (n-hexane-i-PrOH = 97:3,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 44.5
min; t
R(minor) = 41.1
min. HRMS: m/z calcd for C18H19NNaO4:
336.1206; found: 336.1215 [M+ + Na].
Compound 8l: Following the general procedure, compound 8l was obtained after 2 d at r.t. as a
yellow oil in 67% yield. ¹H NMR (300
MHz, CDCl3): δ = 2.13
(s, 3 H), 2.88 (d, J = 6.9
Hz, 2 H), 3.97 (q, J = 6.9
Hz, 1 H), 4.56 (dd, J = 8.1, 12.6
Hz, 1 H), 4.67 (dd, J = 6.3,
12.6 Hz, 1 H), 7.07 (dd, J = 2.1,
8.4 Hz, 1 H), 7.32 (d, J = 2.1
Hz, 1 H), 7.39 (d, J = 8.4
Hz, 1 H). ¹³C NMR (75 MHz, CDCl3): δ = 30.2,
38.0, 45.7, 78.8, 126.9, 129.4, 130.9, 132.0, 133.0, 139.1, 204.6. The
ee of the product was determined by HPLC using a Daicel Chiralpak
IA column (n-hexane-i-PrOH = 97:3,
flow rate 1 mL/min, λ = 230
nm): t
R(major) = 29.1
min; t
R(minor) = 26.1
min. HRMS: m/z calcd for C11H11Cl2NNaO3:
298.0008; found: 298.0007 [M+ + Na]. [α]D
²² -1.53
(c 1.0, CHCl3, 44% ee).
See ref. 25b. Whereas the mean error is estimated of about 2.0 kcal/mol for M062X functional, for B3LYP deviations up to more than 10 kcal/mol could be observed. For this reason, although B3LYP correctly predict the observed enantioselectivity for 4, it cannot be considered representative.