RSS-Feed abonnieren
DOI: 10.1055/s-0030-1259284
Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran by Polymer-Supported IBX Amide
Publikationsverlauf
Publikationsdatum:
23. Dezember 2010 (online)

Abstract
5-Hydroxymethyl-2-furfural (HMF) was selectively converted to 2,5-diformylfuran (DFF) under mild conditions by polymer-supported IBX amide reagent, thus providing a new platform for the production of highly valuable chemicals from biomass.
Key words
2,5-diformylfuran (DFF) - heterogeneous reagents -
oxidation - polymer-supported IBX
- 1a
Bridgwater AV. Chem. Eng. J. 2003, 91: 87Reference Ris Wihthout Link - 1b
Corma A.Iborra S.Velty A. Chem. Rev. 2007, 107: 2411Reference Ris Wihthout Link - 2a
Werpy T.Petersen G.Aden A.Bozell J.Holladay J.White J.Manheim A.Elliot D.Lasure L.Jones S.Gerber M.Ibsen K.Lumberg L.Kelley S. Top Value Added Chemicals from Biomass, In Results of Screening for Potential Candidates from Sugars and Synthesis Gas Vol. 1: U.S. Department of Energy (DOE); Oak Ridge, TN: 2004.Reference Ris Wihthout Link - 2b
Chheda JN.Huber GW.Dumesic JA. Angew. Chem. Int. Ed. 2007, 46: 7164Reference Ris Wihthout Link - 3
Kunkes EL.Simonetti DA.West RM.Serrano-Ruiz JC.Gärtner C.Dumesic JA. Science 2008, 322: 417 - 4a
Lewkowski J. ARKIVOC 2001, (i): 17Reference Ris Wihthout Link - 4b
Lichtenthaler FW. Acc. Chem. Res. 2002, 35: 728Reference Ris Wihthout Link - 4c
Ribeiro ML.Schuchardt U. Catal. Commun. 2003, 4: 83Reference Ris Wihthout Link - 5a
Gandini A.Belgacem NM. Polym. Int. 1998, 47: 267Reference Ris Wihthout Link - 5b
Gandini A.Belgacem NM. Prog. Polym. Sci. 1997, 22: 1203Reference Ris Wihthout Link - 6
Richter DT.Lash TD. Tetrahedron Lett. 1999, 40: 6735 - 7a
Takimiya K.Otsubo T.Ogura F.Ashitaka H.Morita K.Suehiro T. Chem. Lett. 1994, 23: 255Reference Ris Wihthout Link - 7b
Adams H.Bastida R.de Blas A.Carnota M.Fenton DE.Macías A.Rodriguez A.Rodriguez-Blas T. Polyhedron 1997, 16: 567Reference Ris Wihthout Link - 8a
Del Poeta M.Schell WA.Dykstra CC.Jones S.Tidwell RR.Czarny A.Bajic M.Kumar A.Boykin D.Perfect JR. Antimicrob. Agents Chemother. 1998, 42: 2495Reference Ris Wihthout Link - 8b
Hopkins KT.Wilson WD.Bendan BC.McCurdy DR.Hall JE.Tidwell RR.Kumar A.Bajic M.Boykin DW. J. Med. Chem. 1998, 41: 3872Reference Ris Wihthout Link - 9a
Sheibley DW.Manzo MA.Gonzalez-Sanabria OD. J. Electrochem. Soc. 1983, 130: 255Reference Ris Wihthout Link - 9b
Daub J.Salbeck J.Knöchel T.Fischer C.Kunkely H.Rapp KM. Angew. Chem., Int. Ed. Engl. 1989, 28: 1494Reference Ris Wihthout Link - 10a
Cottier L.Descotes G.Lewkowski J. Synth. Commun. 1994, 24: 939Reference Ris Wihthout Link - 10b
Partenheimer W.Grushin VV. Adv. Synth. Catal. 2001, 343: 102Reference Ris Wihthout Link - 10c
Grushin V,Partenheimer W, andManzer LE. inventors; US 2003/0055271.Reference Ris Wihthout Link - 10d
Halliday GA.Young RJ.Grushin VV. Org. Lett. 2003, 5: 2003Reference Ris Wihthout Link - 10e
Carlini C.Patrono P.Galletti AMR.Sbrana G.Zima V. Appl. Catal., A 2005, 289: 197Reference Ris Wihthout Link - 10f
Amarasekara AS.Green D.McMillan E. Catal. Commun. 2008, 9: 286Reference Ris Wihthout Link - 10g
Navarro OC.Canos AC.Chornet SI. Top. Catal. 2009, 52: 304Reference Ris Wihthout Link - 11a
Wirth T. Angew. Chem. Int. Ed. 2005, 44: 3656Reference Ris Wihthout Link - 11b
Ladziata U.Zhdankin VV. ARKIVOC 2006, (ix): 26Reference Ris Wihthout Link - 11c
Stang PJ. J. Org. Chem. 2003, 68: 2997Reference Ris Wihthout Link - 11d
Zhdankin VV.Stang PJ. Chem. Rev. 2002, 102: 2523Reference Ris Wihthout Link - 11e
Varvoglis A.Meth-Cohn O.Kirschning A.Rees C. Hypervalent Iodine in Organic Synthesis Academic Press; London: 1996.Reference Ris Wihthout Link - 12a
Chung W.Kim D.Lee Y. Tetrahedron Lett. 2003, 44: 9251Reference Ris Wihthout Link - 12b
Kim D.Chung W.Lee Y. Synlett 2005, 279Reference Ris Wihthout Link - 12c
Chung W.Kim D.Lee Y. Synlett 2005, 2175Reference Ris Wihthout Link - 12d
Jang H.Chung W.Lee Y. Tetrahedron Lett. 2007, 48: 3731Reference Ris Wihthout Link - 12e
Lei Z.Denecker C.Jegasothy S.Sherrington DC.Slater NKH.Sutherland AJ. Tetrahedron Lett. 2003, 44: 1635Reference Ris Wihthout Link - 12f
Mülbaier M.Giannis A. Angew. Chem. Int. Ed. 2001, 40: 4393Reference Ris Wihthout Link - 12g
Sorg G.Mengel A.Jung G.Rademann J. Angew. Chem. Int. Ed. 2001, 40: 4395Reference Ris Wihthout Link - 13
Trost BM.Braslau R. J. Org. Chem. 1988, 53: 532
References and Notes
Synthesis of Polymer-Supported IBX Amide Reagent Polymer-supported IBX amide reagent was prepared from aminomethyl polystyrene resin (AM PS, 2.1 mmol of NH2/g, Beadtech Inc.). After AM PS resin was pre-swollen with DMF at r.t. for 1 h, 2-iodobenzoic acid was coupled to the resin using DIPCDI/HOBt (3 equiv, each) at r.t. for 4 h to produce 2-iodobenzamide resin (1, Scheme [³] ). The resin was then oxidized by tetrabutylammonium oxone (5 equiv) with methylsulfonic acid in CH2Cl2 for 12 h.¹³ The loading level of polymer-supported oxidants was determined to be 1.02 mmol/g by methoxybenzyl alcohol oxidation method.¹²
15Reusability Test of Polymer-Supported IBX Amide Reagent Upon completion of oxidation, DFF was extracted with CH2Cl2 and the remaining polymer-supported IBA (iodosobenzoic acid, reduced form of IBX) amide was separated by simple filtration. The filtered polymer-supported IBA was easily regenerated after treatment with tetrabutylammonium oxone (5 equiv) and methanesulfonic acid for 12 h as previously reported.¹²
16
Direct Production
of DFF from Fructose
In the one-pot reaction, Amberlist
15® resin (100 mg, purchased from Aldrich) as
a solid-acid catalyst along
with polymer-supported IBX
amide reagent (100 mg) as an oxidant reagent were reacted together
with fructose
(1 mmol) under DMSO at 100 ˚C.
Analysis of Products
from Direct Conversion from Fructose
Direct conversion
of fructose to DFF was analyzed using HPLC equipped with a refractive
index detector. The column oven temperature was 30 ˚C,
and mobile phase was a 25% MeCN aq solution applied at
a flow rate of 1 mL/min. The amounts of HMF and DFF in
the reaction mixture were also analyzed by HPLC with a UV detector,
and the yields were calculated by GC-MS analysis. From this experiment, we
identified two main byproducts as AMF (5-acetoxy-methyl-2-furaldehyde,
MS: m/z = 168.15) and
OBMF {5,5′-[oxybis(methylene)-bis-2-furaldehyde],
MS: m/z = 234.05}.