Synlett 2010(20): 3073-3077  
DOI: 10.1055/s-0030-1259057
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of 1-Stannylated and 1-Iodinated 1-Chloroalkenes as Versatile Synthetic Intermediates

Ramendra Pratap, Uli Kazmaier*
Institut für Organische Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany
Fax: +49(681)3022409; e-Mail: u.kazmaier@mx.uni-saarland.de;
Further Information

Publication History

Received 7 October 2010
Publication Date:
19 November 2010 (online)

Abstract

An efficient and convenient synthesis of 1-stannylated and iodinated 1-chloroalkenes is described based on MoBI3-catalyzed hydrostannations of 1-chloroalkynes, followed by a tin-­iodine exchange. The 1-chloro-1-iodoalkenes are suitable substrates for further modification, for example, via cross-coupling reactions.

    References and Notes

  • 1a Leusink AJ. Budding HA. Drenth W. J. Organomet. Chem.  1967,  9:  295 
  • 1b Ichinose Y. Oda H. Oshima K. Utimoto K. Bull. Chem. Soc. Jpn.  1987,  60:  3468 
  • 1c Nozaki K. Oshima K. Utimoto K. J. Am. Chem. Soc.  1987,  109:  2547 
  • 1d Zhang HX. Guibe F. Balavoine G. Tetrahedron Lett.  1988,  29:  619 
  • 1e Zhang HX. Guibé F. Balavoine G. J. Org. Chem.  1990,  55:  1857 
  • 1f Baldwin JE. Adlington RM. Ramcharitar SH. J. Chem. Soc., Chem. Commun.  1991,  940 
  • 1g Davies AG. In Comprehensive Organometallic Chemistry II   Vol. 2:  Pergamon; Oxford: 1995.  p.217ff 
  • 1h Davies AG. Organotin Chemistry   VCH; Weinheim: 1997. 
  • For reviews, see:
  • 2a Smith ND. Mancuso J. Lautens M. Chem. Rev.  2000,  100:  3257 
  • 2b Trost BM. Ball ZT. Synthesis  2005,  853 ; and references cited therein
  • 3a Hibino J. Matsubara S. Morizawa Y. Oshima K. Tetrahedron Lett.  1984,  25:  2151 
  • 3b Barbero A. Cuadradro P. Fleming I. Gonzalez AM. Pulido FJ. J. Chem. Soc., Chem. Commun.  1992,  351 
  • 3c Reginato G. Mordini A. Caracciolo M. J. Org. Chem.  1997,  62:  6187 
  • 4a Asao N. Liu JX. Sudoh T. Yamamoto Y. J. Chem. Soc., Chem. Commun.  1995,  2405 
  • 4b Asao N. Liu JX. Sudoh T. Yamamoto Y. J. Org. Chem.  1996,  61:  4568 
  • 5 Mirzayans PM. Pouwer RH. Williams CM. Org. Lett.  2008,  10:  3861 
  • 6a Dimopoulos P. Athlan A. Manaviazar S. George J. Walters M. Lazarides L. Aliev AE. Hale KJ. Org. Lett.  2005,  7:  5369 
  • 6b Dimopoulos P. Athlan A. Manaviazar S. Hale KJ. Org. Lett.  2005,  7:  5373 
  • 6c Dimopoulos P. George J. Tocher DA. Manaviazar S. Hale KJ. Org. Lett.  2005,  7:  5377 
  • 7 Miura K. Wang D. Matsumoto Y. Hosomi A. Org. Lett.  2005,  7:  503 
  • 8a Kazmaier U. Schauß D. Pohlman M. Org. Lett.  1999,  1:  1017 
  • 8b Kazmaier U. Pohlman M. Schauß D. Eur. J. Org. Chem.  2000,  2761 
  • 8c Kazmaier U. Schauß D. Pohlman M. Raddatz S. Synthesis  2000,  914 
  • 8d Braune S. Kazmaier U. J. Organomet. Chem.  2002,  641:  26 
  • 9a Braune S. Pohlman M. Kazmaier U. J. Org. Chem.  2004,  69:  468 
  • 9b Kazmaier U. Wesquet A. Synlett  2005,  1271 
  • 9c Wesquet AO. Dörrenbächer S. Kazmaier U. Synlett  2006,  1105 
  • 9d Kazmaier U. Dörrenbächer S. Wesquet A. Lucas S. Kummeter M. Synthesis  2007,  320 
  • 9e Jena N. Kazmaier U. Eur. J. Org. Chem.  2008,  3852 
  • 10a Kazmaier U. Schauß D. Raddatz S. Pohlman M. Chem. Eur. J.  2001,  7:  456 
  • 10b Dörrenbächer S. Kazmaier U. Ruf S. Synlett  2006,  547 
  • 10c Deska J. Kazmaier U. Angew. Chem. Int. Ed.  2007,  46:  4570 ; Angew. Chem. 2007, 119, 4654
  • 10d Deska J. Kazmaier U. Chem. Eur. J.  2007,  13:  6204 
  • 10e Bukovec C. Kazmaier U. Org. Lett.  2009,  11:  3518 
  • See, for example:
  • 11a Negishi E. Organometallics in Organic Synthesis   J. Wiley; New York: 1980.  p.30 
  • 11b Posner GH. An Introduction to Synthesis Using Organocopper Reagents   R. E. Krieger; Malabor: 1988.  p.72 
  • 11c Hanack M. Angew. Chem., Int. Ed Engl.  1978,  17:  333 
  • 11d Negishi E. Valente LF. Kobayashi M. J. Am. Chem. Soc.  1980,  102:  3298 
  • 11e Kropp PJ. Acc. Chem. Res.  1984,  17:  131 
  • 12 Kropp PJ. McNeely SA. Davis RD. J. Am. Chem. Soc.  1983,  105:  6907 
  • 13a Negishi E. Okukado N. Lovich LF. Luo F. J. Org. Chem.  1984,  49:  2629 
  • 13b Tellier F. Sauvetre R. Normant J. Tetrahedron Lett.  1986,  27:  3147 
  • 14 Alami M. Crousse B. Linstrumelle G. Tetrahedron Lett.  1995,  36:  3687 
  • 15 Andersson K. Chem. Scr.  1972,  2:  117 
  • 16 Delavarenne SY. Viehe HG. In The Chemistry of Acetylenes   Marcel Dekker; New York: 1969.  Chap. 10. p.699 
  • 17 Shainyan BA. Mirskowa AN. Zh. Org. Khim.  1983,  19:  1146 
  • 18 Suzuki H. Aihara M. Yamamoto H. Tamamoto Y. Ogawa T. Synthesis  1988,  237 
  • 19 Barleunga J. Rodríguez MA. Campos PJ. Tetrahedron Lett.  1990,  31:  2751 
  • 20 Murray RE. Synth. Commun.  1980,  10:  345 
  • 22a Wesquet AO. Kazmaier U. Adv. Synth. Catal.  2009,  1395 
  • 22b Lin H. Kazmaier U. Eur. J. Org. Chem.  2009,  1221 
  • 28 Mitani M. Kobayashi Y. Koyama K. J. Chem. Soc., Perkin Trans. 1  1995,  653 
21

The slight excess of Bu3SnH was used to allow complete conversion, because during transition-metal-catalyzed hydrostannations in general a certain amount of the tin hydride decomposes towards Bu3SnSnBu3.

23

General Procedure for MoBI 3 -Catalyzed Hydrostannations In an oven-dried Schlenk tube the corresponding chloroalkyne (1 mmol) and Mo(CO)3(CNt-Bu)3 (MoBI3, 12.9 mg, 30 µmol) were dissolved together with hydro-quinone (10 mg, 91 µmol) in dry THF (2 mL) under argon. The solution was heated to 60 ˚C for 10 min before Bu3SnH (435 mg, 1.5 mmol) was added. The reaction mixture was stirred for 16-24 h. After completion, the reaction mixture was cooled to r.t., and the solvent was evaporated in vacuo. The crude product was purified by flash chromatography on silica gel (neutralized with Et3N) using pentane or hexane as an eluent.
Tributyl(1-chloro-1-pentenyl)stannane (2a) Colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 0.92 (t, J = 7.0 Hz, 12 H, CH3), 1.01-1.05 (m, 6 H, CH2), 1.28-1.37 (m, 8 H, CH2), 1.52-1.58 (m, 6 H, CH2), 2.30 (dt, J = 6.9 Hz, J Sn-H = 14.2 Hz, 2 H, CHCH 2), 5.79 (t, J = 6.9 Hz, J Sn-H = 32.4 Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 10.3 (J Sn-C = 342.6 Hz), 13.6, 13.7, 21.8, 27.2 (J Sn-C = 60.2 Hz), 28.7 (J Sn-C = 22.7 Hz), 30.8, 136.8, 142.0 ppm. ¹¹9Sn NMR (150 MHz, CDCl3): δ = -31.9 ppm. HRMS:
m/z calcd for C13H26ClSn [M - C4H9]+: 337.0740; found: 337.0729.
Tributyl(1-chloro-1-octenyl)stannane (2d) Colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 0.92 (t, J = 7.2 Hz, 12 H, CH3), 1.01-1.05 (m, 6 H, CH2), 1.31-1.38 (m, 14 H, CH2), 1.50-1.56 (m, 6 H, CH2), 2.32 (dt, J = 6.9 Hz, J Sn-H = 14.5 Hz, 2 H, CHCH 2), 5.80 (t, J = 6.4 Hz, J Sn-H = 32.1 Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 10.3 (J Sn-C = 341.8 Hz), 13.6, 14.1, 22.6, 27.2, (J Sn-C = 57.2 Hz), 28.6, 28.8, 28.9, 31.7, 136.6, 142.3 ppm. ¹¹9Sn NMR (150 MHz, CDCl3): δ = -32.0 ppm. HRMS: m/z calcd for C16H32ClSn [M - C4H9]+: 365.1053; found: 365.1033.
( E )-Tributyl(1-chloro-3-methoxypropenyl)stannane [( E )-2g] Colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 0.92 (t, J = 7.3 Hz, 9 H, CH3), 1.06-1.11 (m, 6 H, CH2), 1.31-1.40 (m, 6 H, CH2), 1.52-1.60 (m, 6 H, CH2), 3.38 (s, 3 H, OCH3), 4.23 (d, J = 5.3 Hz, J Sn-H = 14.5 Hz, 2 H, CHCH 2), 5.27 (t, J = 5.3 Hz, J Sn-H = 31.1 Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 10.4, 13.6, 27.2, 28.7, 58.1, 69.4, 138.6, 142.2 ppm. ¹¹9Sn NMR (150 MHz, CDCl3): δ = -28.3 ppm. HRMS: m/z calcd for C12H24OClSn [M - C4H9]+: 339.0533; found: 339.0525.
( Z )-Tributyl(1-chloro-3-methoxypropenyl)stannane [( Z )-2g] Colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 0.93 (t, J = 7.1 Hz, 9 H, CH3), 1.06-1.11 (m, 6 H, CH2), 1.31-1.40 (m, 6 H, CH2), 1.52-1.60 (m, 6 H, CH2), 3.34 (s, 3 H, OCH3), 3.87 (d, J = 6.5 Hz, J Sn-H = 14.5 Hz, 2 H, CHCH 2), 6.64 (t, J = 6.5 Hz, J Sn-H = 75.3 Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 11.6 (J Sn-C = 348.0 Hz), 13.6, 27.2
(J Sn-C = 60.8 Hz), 28.7 (J Sn-C = 19.8 Hz), 57.9, 71.6
(J Sn-C = 14.7 Hz), 139.7, 142.1 ppm. ¹¹9Sn NMR (150 MHz, CDCl3): δ = -32.21 ppm. HRMS: m/z calcd for C12H24OClSn [M - C4H9]+: 339.0533; found: 339.0525.
( E )-Tributyl(1-methoxymethylvinyl)stannane (11g) Colorless oil. ¹H NMR (400 MHz, CDCl3): δ = 0.89-0.95 (m, 15 H, CH2 and CH3), 1.31-1.36 (m, 6 H, CH2), 1.48-1.56 (m, 6 H, CH2), 3.32 (s, 3 H, OCH3), 4.05 (d, J = 1.5 Hz, J Sn-H = 34.6 Hz, 2 H, CH2), 5.28 (dt, J = 2.7, 1.7 Hz,
J Sn-H = 62.2 Hz, 1 H, CH), 5.88 (dt, J = 2.7, 1.7 Hz, J Sn-H = 131.0 Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 9.5, 13.7, 27.3, 29.1, 57.7, 79.7, 124.6, 153.0 ppm. ¹¹9Sn NMR (150 MHz, CDCl3): δ = -45.4 ppm. HRMS: m/z calcd for C12H25OSn [M - C4H9]+ 305.0922; found: 305.0920.

24

Representative Procedure for the Synthesis of 1-Chloro-1-iodoalkenes A solution of iodine (280 mg, 1.1 mmol) in CH2Cl2 (8.0 mL) was added dropwise (up to 1 h) to the solution of tributyl(1-chlorohex-1-enyl)stannane (2b, 408 mg, 1 mmol) in CH2Cl2 (7.0 mL) at 0 ˚C. After addition of the iodine solution the cooling bath was removed, and the reaction mixture was stirred at r.t. for 1 h, before the reaction mixture was stirred with sat. KF solution (15 mL) for 2 h. The organic layer was separated, and the aqueous layer was extracted with CH2Cl2 (10 mL). The combined organic layers were dried over Na2SO4. After evaporation of the solvent, the crude product was purified by flash chromatography using hexane as eluent to yield 1-chloro-1-iodo-1-hexene (4b) as colorless oil.
1-Chloro-1-iodo-1-hexene (4b) ¹H NMR (400 MHz, CDCl3): δ = 0.93 (t, J = 7.8 Hz, 3 H, CH3), 1.34-1.42 (m, 4 H, CH2), 2.18 (q, J = 7.5 Hz, 2 H, CH2), 6.45 (t, J = 7.5 Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 13.8, 22.1, 30.0, 31.4, 66.3, 144.4 ppm. HRMS (CI): m/z calcd for C6H10ClI [M]+: 243.9516; found: 243.9556.

25

Representative Procedure for Sonogashira Couplings In an oven-dried Schlenk tube CuI (17.0 mg, 10 mol%) was added to a solution of Pd(PPh3)4 (44.0 mg, 5 mol%) in benzene (2 mL) under Ar. To this mixture 1-chloro-1-iodo-1-heptene (4c, 223 mg, 0.87 mmol) and piperidine (178 µL, 1.74 mmol) were added before it was warmed up to 60 ˚C. Phenyl acetylene was added dropwise (over 1 h), and the reaction mixture was heated at this temperature for addi-tional 4 h. After the reaction was complete (TLC), the mixture was cooled to r.t. and diluted with Et2O (20 mL). The organic layer was washed with sat. NH4Cl solution and H2O (20 mL each). The organic layer was separated, dried over Na2SO4 and evaporated to dryness. The crude product obtained was purified by flash chromatography using hexane as eluent.
( Z )-1-Phenyl-3-chloro-3-nonen-1-yne (6c)
¹H NMR (400 MHz, CDCl3): δ = 0.93 (t, J = 7.3 Hz, 3 H, CH3), 1.34-1.39 (m, 4 H, CH2), 1.47-1.51 (m, 2 H, CH2), 2.33 (q, J = 7.5 Hz, 2 H, CH2), 6.22 (t, J = 7.5 Hz, 1 H, CH), 7.33-7.37 (m, 3 H, ArH), 7.47-7.50 (m, 2 H, ArH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 13.9, 22.4, 27.8, 29.3, 31.4, 86.5, 88.2, 113.7, 122.2, 128.3, 128.8, 131.7, 137.9 ppm. ¹¹9Sn NMR (150 MHz, CDCl3): δ = -28.96 ppm. HRMS: m/z calcd for C15H17 [M - Cl]+: 197.1325; found: 197.1296.

26

Representative Procedure for Stille Couplings In an oven-dried Schlenk tube PdCl2(PhCN)2 (3.8 mg, 5 mol%) was dissolved in DMF (2.0 mL) under Ar. To this solution 1-chloro-1-iodo-1-octene (4d, 54.0 mg, 0.2 mmol) was added, followed by the dropwise addition of vinyl tributyltin (70 µL, 0.22 mmol) at r.t. After 30 min the reaction was complete (TLC), and the reaction mixture was diluted with Et2O, washed with sat. NH4Cl solution and H2O. The organic layer was separated and dried over Na2SO4 and the crude product obtained after evaporation of the solvent was purified by silica gel column chromatography using hexane as eluent.
( Z )-3-Chloro-1,3-decadiene (7d) ²8 ¹H NMR (400 MHz, CDCl3): δ = 0.91 (t, J = 6.3 Hz, 3 H, CH3), 1.29-1.37 (m, 6 H, CH2), 1.40-1.46 (m, 2 H, CH2), 2.33 (q, J = 7.3 Hz, 2 H, CH2), 5.16 (d, J = 11.8 Hz, 1 H, CH), 5.57 (d, J = 15.8 Hz, 1 H, CH), 5.79 (t, J = 7.3 Hz, 1 H, CH), 6.39 (dd, J = 11.8, 15.8 Hz, 1 H, CH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 14.0, 22.6, 28.4, 28.8, 28.9, 31.6, 115.0, 131.9, 132.4, 134.6 ppm.

27

Representative Procedure for Suzuki Couplings A solution of phenylboronic acid (26.4 mg, 0.22 mmol) in EtOH (0.2 mL) was added to a Schlenk tube containing a solution of Pd(PPh3)4 (11.5 mg, 5 mol%) and 1-chloro-1-iodo-1-octene (4d, 54.0 mg, 0.2 mmol) in DME (1.0 mL) under argon. A solution of Na2CO3 (64 mg, 0.6 mmol) in degassed H2O (0.5 mL) was added to the reaction mixture, and the mixture was heated under reflux for 24 h. The reaction mixture was then cooled to r.t., diluted with H2O (10 mL) and Et2O (10 mL). The layers were separated, and the aqueous layer was extracted with Et2O (10 mL). The combined organic layers were washed with H2O and dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The crude product obtained was purified by flash chromatography on silica gel using hexanes to yield 19.0 mg (45%) of monoarylated product 8d and 9.6 mg (16%) of diarylated product 9d.
( Z )-1-Chloro-1-phenyl-1-octene (8d) ¹H NMR (400 MHz, CDCl3): δ = 0.92 (t, J = 7.0 Hz, 3 H, CH3), 1.29-1.42 (m, 6 H, CH2), 1.50-1.56 (m, 2 H, CH2), 2.41 (q, J = 7.1 Hz, 2 H, CH2), 6.16 (t, J = 6.6 Hz, 1 H, CH), 7.31-7.38 (m, 3 H, ArH), 7.57-7.60 (m, 2 H, ArH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 14.0, 22.6, 28.5, 29.0, 29.6, 31.7, 126.3, 128.1, 128.2, 128.8, 132.6, 138.4 ppm. HRMS: m/z calcd for C14H19 [M - Cl]+: 187.1481; found: 187.1482.
1,1-Diphenyl-1-octene (9d) ¹H NMR (400 MHz, CDCl3): δ = 0.89 (t, J = 6.8 Hz, 3 H, CH3), 1.23-1.44 (m, 6 H, CH2), 1.46-1.48 (m, 2 H, CH2), 2.14 (q, J = 7.3 Hz, 2 H, CH2), 6.11 (t, J = 7.5 Hz, 1 H, CH), 7.19-7.41 (m, 6 H, ArH), 7.45-7.49 (m, 2 H, ArH), 7.61-7.64 (m, 2 H, ArH) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 14.0, 22.6, 28.9, 29.7, 29.9, 31.7, 126.7, 126.8, 127.2, 127.3, 128.0, 128.1, 128.8, 129.9, 130.4, 140.3, 141.2, 141.4, 142.9 ppm. HRMS: m/z calcd for C20H24 [M]+: 264.1873; found: 264.1843.