Subscribe to RSS
DOI: 10.1055/s-0030-1258995
Synthesis of (+)-Sclareolide Based on a Cyclic Enol Ether Ring Contraction Induced by Peroxy Acids
Publication History
Publication Date:
08 October 2010 (online)
Abstract
(+)-Sclareolide has been synthesised from (+)-sclareol oxide in one step in high yield, by treatment with peroxy acids under very mild conditions. The reaction pathway does not follow the usual oxidative cleavage of the double bond of (+)-sclareol oxide, but the key intermediate is a five-membered ring hemiketal. The direct conversion of a six-membered cyclic enol ether into a γ-lactone is described for the first time.
Key words
cyclic enol ethers - γ-lactones - ring contraction - oxidative rearrangement - peroxy acids
- Supporting Information for this article is available online:
               
               
 - Supporting Information (PDF) (opens in new window)
 
- 1a First
            synthesis:  
            
Ruzicka L.Janot MM. Helv. Chim. Acta 1931, 14: 645 - 1b  Structure elucidation:  
            
Ruzicka L.Seidel CF.Engel LL. Helv. Chim. Acta 1942, 25: 621 - 2 
             
            
Kaneko H. Agric. Biol. Chem. 1971, 35: 1461 ; see also ref. 4 - 3a 
             
            
Stoll M.Hinder M. Helv. Chim. Acta 1950, 33: 1251 - 3b 
             
            
Hinder M.Stoll M. Helv. Chim. Acta 1950, 1308 - 4 
             
            
Ohloff G. In Fragrance ChemistryTheimer ET. Academic Press; New York: 1982. p.535 - 5 
             
            
Fráter G.Bajgrowicz JA.Kraft P. Tetrahedron 1998, 54: 7633 - 6  
            
Schumacher JN. inventors; US 2,905,576. ; Chem. Abstr. 1960, 54, 13261 - 7  
            
Rocabayera X,Figueras S,Segret R, andPiera E. inventors; WO 2008095534. ; Chem. Abstr. 2008, 149, 266054 - 8 
             
            
Kim SH.Danilenko M.Kim TS. Br. J. Pharmacol. 2008, 155: 814 - 9  
            
Boggs A,Trias J, andHecker S. inventors; WO 9,624,684. ; Chem. Abstr. 1996, 125, 238654 - 10 
             
            
Nozoe S.Masuda J.Takahashi A.Kanou M.Tanaka K.Wakayama T.Koike N.Uchida T.Nagata T.Segawa T.Tanka S. , ; Chem. Abstr. 1999, 131, 307085 - 11  
            
Subbiah V. inventors; WO 9,963,978. ; Chem. Abstr. 1999, 132, 18772 - 12  
            
Gerke T,Sättler A, andMüllner S. inventors; WO 2002030385. ; Chem. Abstr. 2002, 136, 299517 - 13 
             
            
Oh S.Jeong IH.Shin W.-S.Lee S. Bioorg. Med. Chem. Lett. 2003, 13: 2009 - See, as examples, the syntheses from ambrein:
 - 14a 
             
            
Lederer E.Mercier D. Experientia 1947, 3: 188 - And from labdanolic acid:
 - 14b 
             
            
de Pascual Teresa J.Urones JG.Montaña A.Basabe P. Tetrahedron Lett. 1985, 26: 5717 - For recent papers, see:
 - 15a 
             
            
Upar KB.Mishra SJ.Nalawade SP.Singh SA.Khandare RP.Bhat SV. Tetrahedron: Asymmetry 2009, 20: 1637 - 15b 
             
            
Snowden RL. Chemistry & Biodiversity 2008, 5: 958 - Recent examples:
 - 16a  
            
Wei J,Wu Y,Shi X, andZhang Y. inventors; CN 1,683,352. ; Chem. Abstr. 2006, 145, 145522 - 16b  
            
Igarashi K,Takizawa S,Higaki N, andHagiwara H. inventors; JP 2007222110. ; Chem. Abstr. 2007, 147, 299478 - 17 Recent example:  
            
Álvarez-Manzaneda E.Chahboun R.Cabrera E.Álvarez E.Haïdour A.Ramos JM.Álvarez-Manzaneda R.Hmamouchi M.Es-Samti H. Chem. Commun. 2009, 592 - 18a 
             
            
Barrero AF.Altarejos J.Álvarez-Manzaneda EJ.Ramos JM.Salido S. J. Org. Chem. 1996, 61: 2215 - 18b 
             
            
Barrero AF.Altarejos J.Álvarez-Manzaneda EJ.Ramos JM.Salido S. Tetrahedron 1993, 49: 6251 - 18c 
             
            
Barrero AF.Altarejos J.Álvarez-Manzaneda EJ.Ramos JM.Salido S. Tetrahedron 1993, 49: 9525 - 18d  
            
Barrero AF,Altarejos J,Álvarez-Manzaneda EJ, andRamos JM. inventors; ES 2,044,780. ; Chem. Abstr. 1994, 120, 299025 - 18e  
            
Barrero AF,Altarejos J, andSalido S. inventors; ES 2,069,469. ; Chem. Abstr. 1995, 123, 257086 - 18f 
             
            
Barrero AF.Sánchez JF.Álvarez-Manzaneda EJ.Altarejos J.Muñoz M.Haïdour A. Tetrahedron 1994, 50: 6653 ; see also ref. 23b - 19 
             
            
Castro JM.Salido S.Altarejos J.Nogueras M.Sánchez A. Tetrahedron 2002, 58: 5941 - 20a 
             
            
Cocker JD.Halsall TG.Bowers A. J. Chem. Soc. 1956, 4259 - 20b 
             
            
Cocker JD.Halsall TG. J. Chem. Soc. 1956, 4262 - 22  
            
Gerke T, andBruns K. inventors; DE 3,942,358. ; Chem. Abstr. 1991, 115, 136446 - Other oxidants normally yield mixtures of products 7 and 1 from 5/6. See as examples ref. 1a and:
 - 23a 
             
            
Zahra J.-P.Chauvet F.Coste-Manière I.Martres P.Perfetti P.Waegell B. Bull. Soc. Chim. Fr. 1997, 134: 1001 - 23b 
             
            
Barrero AF.Álvarez-Manzaneda EJ.Altarejos J.Salido S.Ramos JM. Tetrahedron 1993, 49: 10405 - 24a 
             
            
Urones JG.Basabe P.Marcos IS.Díez D.Sexmero MJ.Peral MH.Broughton HB. Tetrahedron 1992, 48: 10389 - 24b 
             
            
González AG.Francisco CG.Freire R.Hernández R.Salazar JA.Suárez E. Tetrahedron Lett. 1976, 1897 - 25 One occurrence for compound 11 has been found in the literature:  
            
Giles JA.Schumacher JN. Tetrahedron 1961, 14: 246 ; compounds 8-10 have never been described before - 26 Epimerization at C-8 of 1 is well known. See:  
            
Quideau S.Lebon M.Lamidey A.-M. Org. Lett. 2002, 4: 3975 - 27 
             
            
Peng S.Qing F.-L.Li Y.-Q.Hu C.-M. J. Org. Chem. 2000, 65: 694 - 28 
             
            
Li X.Wang F.Zhang H.Wang C.Song G. Synth. Commun. 1996, 26: 1613 - 29  
            
Castro JM,Salido S,Altarejos J,Nogueras M, andSánchez A. inventors; ES 2,238,003. ; Chem. Abstr. 2006, 145, 397666 - 31 
             
            
Dehal SS.Marples BA.Stretton RJ. Tetrahedron Lett. 1978, 25: 2183 - 32a 
             
            
Hall SS.Chernoff HC. Chem. Ind. 1970, 27: 896 - 32b 
             
            
Armstrong A.Ashraff C.Chung H.Murtagh L. Tetrahedron 2009, 65: 4490 ; note that the oxidative rearrangement of the 3,4-dihydropyrans described in these articles leads to tetrahydrofuranones, not to γ-lactones - 33 
             
            
Barton DHR.Parekh SI.Taylor DK.Tse C.-I. Tetrahedron Lett. 1994, 35: 5801 
References and Notes
Acid traces present in commercial CDCl3 were capable of transforming 5 into 6 during the NMR experiments. Previous neutralisation of the deuterated solvent was necessary.
30In ref. 23a, V is postulated in a related reaction mechanism.