Subscribe to RSS
DOI: 10.1055/s-0030-1258526
Straightforward Conversion of Arene Carboxylic Acids into Aryl Nitriles by Palladium-Catalyzed Decarboxylative Cyanation Reaction
Publication History
Publication Date:
27 July 2010 (online)

Abstract
A one-pot procedure to convert aromatic carboxylic acids into aromatic nitriles is described. The methodology is based on a palladium(II)-catalyzed decarboxylative cyanation reaction using cyanohydrins as soluble cyanide sources. The described reaction worked on a panel of substrates and is additionally of particular interest for the straightforward preparation of ¹³C- or ¹4C-labeled compounds.
Key words
palladium - cyanation - arene carboxylic acids - cyanohydrin - decarboxylation
- 1
Kleemann A.Engel J.Kutscher B.Reichert D. In Pharmaceutical Substances: Syntheses, Patents, Application 4th ed.: Thieme; Stuttgart: 2001. - See, for example:
- 2a
Sundermeir M.Zapf A.Beller M. Eur. J. Inorg. Chem. 2003, 3513Reference Ris Wihthout Link - 2b
Anderson BA.Bell EC.Ginah FO.Harn NK.Pagh LM.Wepsiec JP. J. Org. Chem. 1998, 63: 8224Reference Ris Wihthout Link - 2c
Maligres PE.Waters MS.Fleitz F.Askin D. Tetrahedron Lett. 1999, 40: 8193Reference Ris Wihthout Link - 2d
Jin F.Confalone PN. Tetrahedron Lett. 2000, 41: 3271Reference Ris Wihthout Link - 3a
Herrman WA.Broßmer C.Öfele K.Priermeier T.Beller M.Fisher H. Angew. Chem., Int. Ed. Engl. 1995, 34: 1844Reference Ris Wihthout Link - 3b
Beller M.Fisher H.Herrman WA.Broßmer C. Angew. Chem., Int. Ed. Engl. 1995, 34: 1848Reference Ris Wihthout Link - 3c
Zapf A.Beller M. Chem. Eur. J. 2001, 7: 2908Reference Ris Wihthout Link - 3d
Sundermeier M.Zapf A.Mutyala S.Baumann W.Sans J.Weiss S.Beller M. Chem. Eur. J. 2003, 9: 1828Reference Ris Wihthout Link - 3e
Littke A.Soumeillant M.Kaltenbach RF.Cherney RJ.Tarby CM.Kiau S. Org. Lett. 2007, 9: 1711Reference Ris Wihthout Link - 4
Gooßen LJ.Rodriguez N.Gooßen K. Angew. Chem. Int. Ed. 2008, 47: 2 - For recent examples, see:
- 5a
Myers AG.Tanaka D.Mannion MR. J. Am. Chem. Soc. 2002, 124: 11250Reference Ris Wihthout Link - 5b
Hu P.Kan J.Su W.Hong M. Org. Lett. 2009, 11: 2341Reference Ris Wihthout Link - 5c
Tanaka D.Myers AG. Org. Lett. 2004, 6: 433Reference Ris Wihthout Link - For recent examples, see:
- 6a
Baudoin O. Angew. Chem. Int. Ed. 2007, 46: 2Reference Ris Wihthout Link - 6b
Gooßen LJ.Rodriguez N.Lange PP.Linder C. Angew. Chem. Int. Ed. 2009, 48: 1Reference Ris Wihthout Link - 6c
Becht J.-M.Catala C.Le Drian C.Wagner A. Org. Lett. 2007, 9: 1781Reference Ris Wihthout Link - 6d
Gooßen LJ.Zimmermann B.Knauber T. Angew. Chem. Int. Ed. 2008, 47: 7103Reference Ris Wihthout Link - 7a
Voutchkova A.Coplin A.Leadbeater NE.Crabtree RH. Chem. Commun. 2008, 6312Reference Ris Wihthout Link - 7b
Wang C.Piel I.Glorius F. J. Am. Chem. Soc. 2009, 131: 4194Reference Ris Wihthout Link - 8a
Gooßen LJ.Deng G.Levy LM. Science 2006, 313: 662Reference Ris Wihthout Link - 8b
Gooßen LJ.Rodriguez N.Melzer B.Linder C.Deng G.Levy LM. J. Am. Chem. Soc. 2007, 129: 4824Reference Ris Wihthout Link - 8c
Moon J.Jeong M.Nam H.Ju J.Moon JH.Jung HM.Lee S. Org. Lett. 2008, 10: 945Reference Ris Wihthout Link - 8d
Shang R.Fu Y.Li JB.Zhang SL.Guo QX.Liu L. J. Am. Chem. Soc. 2009, 131: 5738Reference Ris Wihthout Link - 8e
Shang R.Fu Y.Wang Y.Xu Q.Yu HZ.Liu L. Angew. Chem. Int. Ed. 2009, 48: 9350Reference Ris Wihthout Link - 9a
Waetzig SR.Tunge JA. J. Am. Chem. Soc. 2007, 129: 14860Reference Ris Wihthout Link - 9b
Fields WH.Khan AK.Sabat M.Chruma JJ. Org. Lett. 2008, 10: 5131Reference Ris Wihthout Link - 9c
Pi SF.Tang BX.Li JH.Liu YL.Liang Y. Org. Lett. 2009, 11: 2309Reference Ris Wihthout Link - 10a
Bueler CA.Pearson DE. Survey of Organic Synthesis Wiley Interscience; New York: 1970. p.951Reference Ris Wihthout Link - 10b
Vorbrüggen H. Tetrahedron Lett. 1968, 13: 1631Reference Ris Wihthout Link - 11a
Miller CS. Org. Synth., Coll. Vol. III 1955, 646Reference Ris Wihthout Link - 11b
Lücke J.Winkler RE. Chimia 1971, 25: 94Reference Ris Wihthout Link - 11c
Hulkenberg A.Troost JJ. Tetrahedron Lett. 1982, 23: 1505Reference Ris Wihthout Link - 12a
Sekiya A.Ishikawa N. Chem. Lett. 1975, 277Reference Ris Wihthout Link - 12b
Sundermeier M.Zapf A.Mutyala S.Baumann W.Sans J.Weiss S.Beller M. Chem. Eur. J. 2003, 9: 1828Reference Ris Wihthout Link - 13
Sakakibara Y.Sasaki K.Okuda F.Hokimoto A.Ueda T.Sakai M.Takagi K. Bull. Chem. Soc. Jpn. 2004, 77: 1013 - 14
Allentoff AJ.Markus B.Duelfer T.Wu A.Jones L.Ciszewska G.Ray T. J. Labelled Compd. Radiopharm. 2000, 43: 1075 - 15
Ellis GP.Rommey-Alexander TM. Chem. Rev. 1987, 87: 779 - 16a
Jin F.Confalone PN. Tetrahedron Lett. 2000, 41: 3271Reference Ris Wihthout Link - 16b
Ramnauth J.Bhardwaj N.Renton P.Rakhit S.Maddaford SP. Synlett 2003, 2237Reference Ris Wihthout Link - 17
Sundermeier M.Zapf A.Beller M. Angew. Chem. Int. Ed. 2003, 42: 1661 - 18
Carr G.Whittaker D. J. Chem. Soc., Perkin Trans. 2 1989, 359
References and Notes
General Procedure
for the Preparation of Aryl Nitriles 2
Arene carboxylic
acid (250 mg, 1 equiv), Ag2CO3 (3 equiv), and
palladium trifluoroacetate (0.2 equiv) were suspended in DMSO-DMF
(95:5, 5 mL) under air. The reaction mixture is heated at 100 ˚C,
then, cyclohexanone cyanohydrin
(1 equiv) diluted in DMSO-DMF
(95:5, 5 mL) was added dropwise with a syringe pump. The reaction
mixture rapidly turned black, was further heated for 1 h, then was
cooled, poured into EtOAc, and filtered. The filtrate was washed sequentially
with aq NaHCO3 (1 M), H2O and brine, then was
dried over MgSO4, filtered, and concentrated. Chromatography
of the residue on silica gel (EtOAc-heptane) gave the desired
product. Compounds 2a-l are known compounds.
Compound 2m: white solid, mp 69.6 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 2.47 (s,
3 H), 3.84 (s, 3 H), 3.88 (s, 3 H), 6.30 (s, 1 H), 6.38 (s, 1 H)
ppm.¹³C NMR (100 MHz, CDCl3): δ = 20.81,
55.51, 55.90, 94.67, 95.70, 106.87, 116.05, 145.25, 163.81, 164.51
ppm. IR (NaCl): 2972, 2212, 1606, 1577, 1468, 1425, 1336, 1304,
1238, 1209, 1153, 1095, 1053, 935, 853, 830 cm-¹.
HRMS: m/z calcd for [M + H]+:178.0868;
found:178.0863.
Compound 2n: white
solid, mp 168.8 ˚C. ¹H NMR
(400 MHz, CDCl3): δ = 3.96 (s, 3 H),
3.97 (s, 3 H), 6.46 (s, 1 H), 7.68 (s, 1 H) ppm.¹³C
NMR (100 MHz, CDCl3): δ = 56.28, 56.47,
94.68, 95.68, 102.20, 116.12, 138.78, 160.41, 162.52. IR (NaCl):
2989, 2224, 1595, 1561, 1492, 1471, 1433, 1386, 1317, 1284, 1221,
1161, 1020, 896, 838, 780 cm-¹. HRMS: m/z calcd for [M + Na]+:263.9636;
found:263.9644.
Procedure for
the Preparation of 3h
¹³C-Labeled
9-anthracenecarboxylic acid was prepared in two steps. ¹³C-Labeled
9-anthracenecarbonitrile was first prepared from ¹³C-labeled
cyclohexanone cyanohydrin according to the procedure described above.
After purification, the ¹³C-labeled
nitrile was hydrolyzed under basic conditions: ¹³C-labeled
nitrile (1 mmol) was reacted overnight at 80 ˚C
with aq KOH (10 mL, 40% w/w) and abs. EtOH (10
mL). The mixture was acidified to pH 3 (HCl solution) and extracted
by EtOAc. The organic phase was concentrated, and the residue was
purified by reversed-phase chromatography with MeOH-H2O
(70:30) to afford product 3h; mp 212-214 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.61 (s,
1 H), 8.34 (d, 2 H, J = 8.8
Hz), 8.07 (d, 2 H, J = 8.8
Hz), 7.62 (t, 2 H, J = 7.2
Hz), 7.54 (t, 2 H, J = 7.2
Hz) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 171.38
(¹³CO2H), 131.23, 130.96,
129.96, 128.47, 127.68, 126.80, 125.50, 124.96 ppm. IR (KBr): 3200-2700,
2761, 2623, 1680, 1626, 1557, 1523, 1487, 1447, 1425, 1399, 1343,
1319, 1292, 1266, 1254, 1229, 1177, 1154, 1142, 1020, 992, 917,
891, 857, 847, 793, 738, 723, 639, 596, 559, 513 cm-¹.
HRMS: m/z calcd for C14
¹³CH10O2Na:
246.0578; found: 246.0581.