Subscribe to RSS
DOI: 10.1055/s-0030-1258494
Novel 4- and 7-Sulfonylated 2-Substituted Benzoxazoles
Publication History
Publication Date:
16 July 2010 (online)

Abstract
The efficient synthesis of sulfonylated benzoxazoles at positions C4 or C7 is reported. The condensation reactions involve original anilide acetal reagents which, upon acid catalysis, allow an easy cyclization reaction with the sulfonylated o-aminophenol partners. This method circumvents the classical use of orthoesters which drawback is the limited access to aromatic reagents.
Key words
acetals - condensation - cyclization - heterocycles - substituents effects
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Reynolds MB.DeLuca MR.Kerwin SM. Bioorg. Chem. 1999, 27: 326 -
1b
Tipparaju S.Joyasamal S.Pieroni M.Kaiser M.Brun R.Kozikowski AP. J. Med. Chem. 2008, 51: 7344 -
2a
Do H.-Q.Daugulis O. J. Am. Chem. Soc. 2007, 129: 12404 -
2b
Kantam ML.Venkanna GT.Kumar KBS.Balasubrahmanyam V.Bhargava S. Synlett 2009, 1753 -
2c
Kumar D.Rudrawar S.Chakraborti AK. Aust. J. Chem. 2008, 61: 881 -
3a
Huxley A. Synlett 2006, 2658 -
3b
Kumar R.Selvam C.Kaur G.Chakraborti AK. Synlett 2005, 1401 - 4
Sardarian AR.Shahsavari-Fard Z. Synlett 2008, 1391 - 5
Chang J.Zhao K.Pan S. Tetrahedron Lett. 2002, 43: 951 -
6a
Bonnamour J.Bolm C. Org. Lett. 2008, 10: 2665 -
6b
Ueda S.Nagasawa H. J. Org. Chem. 2009, 74: 4272 -
7a
Wang BB.Maghami N.Goodlin VL.Smith PJ. Bioorg. Med. Chem. Lett. 2004, 14: 3221 -
7b
McKee ML.Kerwin S. Bioorg. Med. Chem. 2008, 16: 1775 - 8
Tian Y.Chen CI.Yang CC.Young AC.Jang SH.Chen WC.Jen AK.-Y. Chem. Mater. 2008, 20: 1977 - 9
Crocetti L.Maresca A.Temperini C.Hall RA.Scozzafava A.Mühlschlegel FA.Supuran CT. Bioorg. Med. Chem. Lett. 2009, 19: 1371 -
10a
Zonta C.DeLucchi O.Volpicelli R.Cotarca L. Top. Curr. Chem. 2007, 275: 131 -
10b
Brett AD,Rabinowitz M,Rosen MD, andWoods CR. inventors; WO2008124524. -
11a
Bruyneel F.Enaud E.Billottet L.Vanhulle S.Marchand-Brynaert J. Eur. J. Org. Chem. 2008, 72 -
11b
Bruyneel F.Payen O.Rescigno A.Tinant B.Marchand-Brynaert J. Chem. Eur. J. 2009, 8283 -
12a
So Y.-H.Heeschen JP. J. Org. Chem. 1997, 62: 3552 -
12b
Khajavi MS.Mohammadi AA. J. Chem. Res., Synop. 2002, 136 - 13
Wrobel J.Rogers J.Green D.Kao K. Synth. Commun. 2002, 32: 2695 - 14
DeWolfe RH. Carboxylic Ortho Acid Derivatives Academic Press; New York: 1970. - 15
Breslow R.Pandey PS. J. Org. Chem. 1980, 45: 741 - 16
McClelland RA.Patel G.Lam P. J. Org. Chem. 1981, 46: 1011 - 19
Dipakranjan M. Synth. Commun. 1986, 16: 331 - 20
Huang S.-T.Hsei I.-J.Chen C. Bioorg. Med. Chem. 2006, 14: 6106 -
21a
Abou-Zied OK. Chem. Phys. 2007, 337: 1 -
21b
Mazzitelli CL.Rodriguez M.Kerwin SM.Brodbelt JS. J. Am. Soc. Mass Spectrom. 2008, 19: 209 - 22
Shank RP.Smith-Wintowsky VL.Maryanoff BE.
J. Enzyme Inhib. Med. Chem. 2007, 23: 271 - 23
Bruyneel F.D’Auria L.Payen O.Courtoy PJ.Marchand-Brynaert J. ChemBioChem 2010, 11: 1451
References and Notes
Synthesis of Benzanilide
Acetals - General Procedure
Benzanilide (1
equiv, 10 mmol) and (m)ethyl trifluoro-methanesulfonate (1.2 equiv)were
stirred in dry CH2Cl2 (6 mL) overnight. Dry
Et2O (40 mL) was added at 0 ˚C, and
the mixture was left 1 h until all the imidatonium salt had precipitated.
This salt was separated from the solvent, dissolved into CH2Cl2 (6
mL) and added dropwise over a period of 30 min to a cooled (0 ˚C)
stirred solution of NaOEt freshly made by addition of Na (0.5 g)
to EtOH (20 mL). The solvents were removed by rotary evaporation
and hexane (40 mL) was added. This dissolved the crude anilide acetal,
and the excess of salt was filtered off. Evaporation gave the crude
acetal.
Cyclization into Benzoxazole - General
Procedure
Sulfonylated aminophenols (1 equiv, 1 mmol)
and orthoester (3 equiv) or benzanilide acetal (3 equiv) were added
to dioxane (3 mL), and the mixture was heated at 60 ˚C overnight.
The crude reaction mixture was filtered directly, and the residual
solid was triturated twice with CH2Cl2 and filtered
again. The filtered solutions were pooled together and concentrated
under vacuum. The residue was either recrystallized in a mixture
of CH2Cl2-EtOH (8:2 v/v)
or purified by column chromatography (silica gel, cyclohexane-EtOAc).
Spectroscopic
Data for Selected Compounds
2-(2′-Methoxyphenyl)benzoxazole-4-sulfonic
Acid (6a)
White solid.
Yield 70%. Mp <225 ˚C (slow decomp.).
IR: 2923, 2352, 1647, 1548, 1419, 1240, 1105, 1049, 750 cm-¹. ¹H
NMR (300 MHz, DMSO-d
6): δ = 3.90
(s, 3 H, OCH3), 7.23 (ddd, 1 H, J = 0.8,
2.6 Hz, 8.3 Hz, H3
′), 7.37 (br t,
1 H, J = 7.9
Hz, H5
′), 7.56 (br t, 1 H, J = 8.0 Hz,
H6), 7.68 (dd, 1 H, J = 1.0,
7.8 Hz, H7), 7.71 (m, 1 H, H4
′),
7.77 (dd, 1 H, J = 1.0,
8.2 Hz, H6
′), 7.82 (dd, 1 H, J = 1.0, 7.8
Hz, H5). ¹³C NMR (75 MHz,
DMSO-d
6): δ = 56.3
(OCH3), 112.2 (C3
′), 112.6
(C7), 119.0 (C5
′), 120.6
(C1
′), 123.6 (C4
′),
125.2 (C6
′), 128.7 (C5),
131.4 (C6), 138.6 (C4), 140.3 (C9),
151.4 (C8), 160.5 (C2), 162.4 (C2
′).
ESI-MS: m/z (%) = 304.13
(100) [M - H]-, 289.07
(25), 198.05 (10). ESI-HRMS: m/z [M - H]- calcd
for C14H10NO5S: 304.0280; found:
304.0267.
2-(2′-Benzyloxyphenyl)benzoxazole-4-sulfonic
Acid (6c)
Yellow powder. Yield 60%. Mp 180-185 ˚C.
IR: 2923, 1549, 1450, 1419, 1249, 1197, 1051, 752 cm-¹. ¹H
NMR (300 MHz, CD3OD/CDCl3): δ = 5.21
(s, 2 H, CH2Ph), 6.64 (d, 1 H, J = 7.4
Hz, H3
′), 6.74 (t, 1 H, J = 7.4 Hz,
H5
′), 6.90-7.05 (m, 6 H,
Ph and H4
′), 7.29 (t, 1 H, J = 7.8 Hz,
H6), 7.39 (d, 1 H, J = 7.9
Hz, H7), 7.55 (d, 1 H, J = 7.4
Hz, H6
′), 7.75 (d, 1 H, J = 7.7 Hz,
H5). ¹³C NMR (75 MHz, CD3OD/CDCl3): δ = 72.2
(CH2Ph), 112.8 (C3
′),
115.6 (C7), 115.7 (C1
′),
121.8 (C5
′), 123.2 (C4
′),
125.1 (C6
′), 127.7 (Ph), 127.8 (Ph),
128.1 (Ph), 130.5 (C5), 133.1 (C6), 135.1
(C4), 136.3 (C9), 150.0 (C8), 155.7
(C2), 162.6 (C2
′). ESI-MS: m/z (%) = 380.07
(95) [M - H]-, 289.36
(100). ESI-HRMS: m/z [M - H]- calcd
for C20H14NO5S: 380.0588; found:
380.0593.
2-(2′-Methoxyphenyl)benzoxazole-7-sulfonic
Acid (7a)
Red solid. Yield
65%. Mp <210 ˚C (slow decomp.). IR: 2923,
1602, 1552, 1480, 1419, 1220, 1199, 817, 794 cm-¹. ¹H
NMR (300 MHz, DMSO-d
6): δ = 3.89
(s, 3 H, OCH3), 7.24 (dd, 1 H, J = 2.5,
7.9 Hz, H3
′), 7.35 (t, 1 H, J = 7.8 Hz, H4
′),
7.55-7.62 (m, 2 H, H5 and H5
′),
7.69 (m, 1 H, H6
′), 7.78 (m, 2 H,
H6 and H4). ¹³C
NMR (75 MHz, DMSO-d
6): δ = 56.3
(OCH3), 112.9 (C3
′), 118.8
(C9), 121.2 (C5
′), 124.4
(C4
′), 124.9 (C4 and C6
′),
128.5 (C6), 131.5 (C5), 133.1 (C1
′),
143.0 (C7), 146.7 (C8), 160.5 (C2),
163.1 (C2
′). ESI-MS: m/z (%) = 304.17
(100) [M - H]-, 289.30
(70), 261.36 (30). ESI-HRMS: m/z [M - H]- calcd
for C14H10NO5S: 304.0280; found:
304.0269.
2-(2′-Hydroxyphenyl)benzoxazole-4-sulfonic
Acid (9)
Brown solid. Yield
95%. Mp 197-200 ˚C. IR: 3174,
2921, 1631, 1548, 1454, 1421, 1247, 1054, 746 cm-¹. ¹H
NMR (300 MHz, CD3OD): δ = 7.02-7.07
(m, 2 H, H3
′ and H4
′), 7.41-7.48
(m, 3 H, H6, H5
′, OH),
7.81 (d, 1 H, J = 8.2
Hz, H7), 7.87 (d, 1 H, J = 7.7
Hz, H6
′), 8.06 (d, 1 H, J = 7.9 Hz, H5). ¹³C
NMR (75 MHz, CD3OD): δ = 112.8 (C3
′),
115.3 (C7), 119.9 (C5
′),
125.8 (C1
′), 127.3 (C4
′),
130.0 (C6
′), 133.8 (C5),
136.5 (C6), 137.8 (C4), 139.3 (C9),
152.5 (C8 and C2), 166.0 (C2
′).
ESI-MS: m/z (%) = 289.87
(100) [M - H]-. ESI-HRMS: m/z [M - H]- calcd
for C13H8NO5S: 290.0234; found:
290.0123.
2-(2′-Methoxyphenyl)benzoxazole-4-sulfonamide
(10)
White powder. Yield
90%. Mp <210 ˚C (slow decomp.). IR: 2918,
1544, 1423, 1328, 1251, 1157, 1139, 754 cm-¹. ¹H NMR
(300 M Hz, DMSO-d
6): δ = 3.91
(s, 3 H, OCH3), 7.27 (ddd, 1 H, J = 0.8,
2.6, 8.3 Hz, H3
′), 7.55-7.60
(m, 4 H, SO2NH2, H7 and H4
′),
7.79-7.85 (m, 2 H, H5
′ and
H6), 7.91 (dd, 1 H, J = 1.2,
6.6 Hz, H6
′), 8.07 (dd, 1 H, J = 0.8, 8.2
Hz, H5). ¹³C NMR (75 MHz,
DMSO-d
6): δ = 55.9
(OCH3), 113.0 (C3
′), 115.2
(C7), 119.2 (C5
′), 120.7
(C1
′), 122.9 (C4
′),
125.5 (C6
′), 127.4 (C5),
131.0 (C6), 134.7 (C4), 138.0 (C9),
151.3 (C8), 160.1 (C2), 163.8 (C2
′).
ESI-MS: m/z (%) = 304.90 (100) [M + H]+,
242.09 (20). HRMS (CI): m/z [M + H]+ calcd
for C14H12N2O4S: 305.05960;
found: 305.05976.