References and Notes
1
Mitzel TM.
Palomo C.
Jendza K.
J.
Org. Chem.
2002,
67:
136
2
Frimpong K.
Wzorek J.
Lawlor C.
Spencer K.
Mitzel T.
J.
Org. Chem.
2009,
74:
5861
3
Pelc MJ.
Zakarian A.
Tetrahedron Lett.
2006,
47:
7519
4
Armstrong A.
Challinor L.
Moir JH.
Angew.
Chem. Int. Ed.
2007,
46:
5369
5
Ma M.
Peng L.
Li C.
Zhang X.
Wang J.
J. Am. Chem. Soc.
2005,
127:
15016
6a
Wee AGH.
Shi Q.
Wang Z.
Hatton K.
Tetrahedron:
Asymmetry
2003,
14:
897
6b
Bach T.
Korber CJ.
J. Org. Chem.
2000,
65:
2358
7a
Inoue M.
Miyazaki K.
Uehara H.
Maruyama M.
Hirama M.
Proc. Natl. Sci. U.S.A.
2004,
101:
12013
7b For a review, see: Dilworth BM.
McKervey MA.
Tetrahedron
1986,
42:
3731
8a
Normant H.
Castro CR.
C.
R. Hebd. Seances Acad. Sci.
1964,
259:
830
8b
Gross H.
Hoft E.
Angew. Chem., Int. Ed. Engl.
1967,
6:
335
8c
Ogura K.
Fujitha M.
Takahashi K.
Iida H.
Chem. Lett.
1982,
11:
1697
8d
Cohen T.
Matz JR.
J. Am. Chem. Soc.
1985,
106:
6902
8e
Nakatsuka S.
Takai K.
Utimoto K.
J.
Org. Chem.
1986,
51:
5045
9
Chu DTH.
J.
Org. Chem.
1983,
48:
3571
10a
Paterson I.
Fleming I.
Tetrahedron
Lett.
1979,
993
10b
Paterson I.
Tetrahedron
1988,
44:
4207
10c
Reetz MT.
Huttenhain S.
Walz P.
Lowe U.
Tetrahedron
Lett.
1979,
4971
10d
Groth U.
Huhn T.
Richter N.
Liebigs Ann.
Chem.
1993,
49
11a
Bohme H.
Ber. Dtsch. Chem. Ges.
1936,
69:
1610
11b
Vedejs E.
Mullins MJ.
Renga JM.
Singer SP.
Tetrahedron
Lett.
1978,
519
11c
Arai K.
Iwamura H.
Oki M.
Bull.
Chem. Soc. Jpn.
1975,
48:
3319
12
Bordwell FG.
Pitt BM.
J. Am. Chem. Soc.
1955,
77:
572
13 For the preparation of the acetate
corresponding to sulfide 6, see: Taniguchi N.
J. Org. Chem.
2006,
71:
7874 ; the resulting acetate was hydrolyzed and
the hydroxy group protected as its silyl ether
14 Anhydrous zinc bromide was prepared
as a 1.5 M solution in dry THF by heating at reflux for 2 h a 1.5
M solution of DCE containing excess acid washed zinc, see: Brown DS.
Charreau P.
Hansson T.
Ley SV.
Tetrahedron
1991,
47:
1311
15 The reaction of chloro sulfide 7 with 1-octynylmagnesium chloride proceeded
to afford the product in lower yield (50%), while reaction
with 1-lithio octyne did not yield any desired product.
16 (Z)-1-Octenylmagnesium
bromide was prepared from (Z)-1-bromo
octene and Mg turnings while (E)-1-octenyl-magnesium
chloride was prepared from (E)-1-iodo
octene by halogen-metal exchange, see: Ren H.
Krasovskiy A.
Knochel P.
Org.
Lett.
2004,
6:
4215
17
General Experimental
Procedure
To a solution of 1-octyne (165 mg, 1.5 mmol)
in dry THF (0.8 mL) cooled at -10 ˚C
was added i-PrMgCl˙LiCl (1 mL, 1.5
mmol, 1.5 M in THF) and stirred for 30 min at the same temperature.
To the so generated Grignard reagent, ZnBr2 (1.1 mL,
1.65 mmol, 1.5 M in THF) was added at 0 ˚C and stirred
for 30 min. To the organozinc reagent maintained at 0 ˚C
was added a solution of chloro sulfide (0.5 mmol) in benzene (5
mL), the reaction mixture stirred gradually allowing it to attain
r.t., and stirred further for a period of 7 h when TLC examination
indicated complete consumption of the chloro sulfide. The reaction
mixture was cooled to 0 ˚C and quenched by the
addition of an aq sat. NH4Cl solution. It was allowed
to warm to r.t. and diluted with
Et2O (5 mL),
the layers were separated and aqueous layer extracted with Et2O
(3 × 10 mL). The combined organic layers
were washed with H2O (5 mL), brine (5 mL), dried over
Na2SO4, and the solvent evaporated under reduced pressure
to afford a crude compound which was purified by column chromatography
using hexanes as the eluent to afford the pure product 9a (192 mg, 0.43 mmol) in 86% yield as
a liquid. TLC: R
f
= 0.34 (hexanes). IR (KBr):
3445, 3063, 2954, 2928, 1586, 1463, 1384, 1253, 1094, 827, 837,
777, 695 cm-¹. ¹H
NMR (200 MHz, CDCl3): δ = 7.60-7.30
(m, 10 H), 4.91 (d, J = 6.8
Hz, 1 H), 4.16 (td, J = 2.3,
6.8 Hz, 1 H), 2.16 (dt, J = 2.3,
6.8 Hz, 2 H), 1.50-1.15 (m, 8 H), 1.00-0.90 (m,
12 H), 0.20 (s, 3 H), 0.0 (s, 3 H). ¹³C
NMR (75 MHz, CDCl3): δ = 142.00, 135.62,
132.11, 128.58, 127.82, 127.69, 127.36, 126.89, 87.32, 77.45, 48.91,
31.45, 28.51, 28.47, 25.89, 22.62, 18.35, 14.20, -4.55, -4.83.
ESI-MS: m/z 469 [M + NH4]+.
ESI-HRMS: m/z calcd for C28H40ONaSiS: 475.2467;
found: 475.2466.
18 Substrate 13 was
prepared by deprotection of acetonide moiety in 10 followed
by protection of the resulting diol, see Supporting Information.
19 The signals for the olefinic, methine
protons of the acetonide and CH
2OBn
appear downfield in ester 18 compared to
the corresponding protons of ester 19,
see Supporting Information.
20a
Trost BM.
Belletire JL.
Godleski S.
McDougal PG.
Balkovec JM.
J.
Org. Chem.
1986,
51:
2370
20b
Trost BM.
Bunt RC.
Pulley SR.
J. Org. Chem.
1994,
59:
4202
21a
Miller EG.
Rayner DR.
Mislow K.
J. Am. Chem. Soc.
1966,
88:
3139
21b
Braverman S.
Stabinsky Y.
Chem. Commun.
1967,
270
21c
Evans DA.
Andrews
GC.
Acc.
Chem. Res.
1974,
7:
147
22
Armstrong A.
Emmerson DPG.
Org. Lett.
2009,
11:
1547
23a
McLaughlin JL.
J. Nat. Prod.
2008,
71:
1311
23b
Davoren JE.
Harcken C.
Martin SF.
J. Org. Chem.
2008,
73:
391
24
Petranek J.
Vecera M.
Collect. Czech. Chem. Commun.
1959,
24:
2191
25a
Kirmse W.
Kapps M.
Chem.
Ber.
1968,
101:
994
25b
Doyle MP.
Griffin JH.
Chinn MS.
van Leusen D.
J.
Org. Chem.
1984,
49:
1917
26
Calo V.
Nacci A.
Fiandanese V.
Volpe A.
Tetrahedron Lett.
1997,
38:
3289