Synlett 2010(12): 1783-1788  
DOI: 10.1055/s-0030-1258103
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

N-Heterocyclic Carbene Catalyzed [2+2] Cycloaddition of Aryl Isothiocyanates and Nitroolefins: An Efficient Synthesis of β-Thiolactams

Chhama Awasthi, Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211 002, India
Fax: +91(532)2460533; e-Mail: ldsyadav@hotmail.com;
Further Information

Publication History

Received 11 April 2010
Publication Date:
30 June 2010 (online)

Abstract

The first example of a convenient N-heterocyclic carbene (NHC) catalyzed synthesis of β-thiolactams via [2+2] cycloaddition of aryl isothiocyanates and nitroolefins is reported. The protocol affords β-thiolactams in excellent yields with high diastereoselectivity in favor of the cis isomer. Operational simplicity, excellent yields of products, efficient synthesis, and no by-product formation are the salient features of this synthetic protocol. Two possible catalytic pathways, initiated by the addition of NHC to aryl isothiocyanates or nitroolefins, are discussed.

    References and Notes

  • 1a Dittmer DC. Chem. Ind. (London)  1947,  779 
  • 1b Mizuno N. Misono M. Chem. Rev.  1998,  98:  199 
  • 2 Singh GS. D’hooghe M. De Kimpe N. In Comprehensive Heterocyclic Chemistry III   Vol. 2:  Stevens CV. Elsevier; Oxford: UK, 2008.  Chap. 2.01. p.1 
  • 3a The Organic Chemistry of β -Lactams   George GI. VCH; Weinheim: 1993. 
  • 3b Kidwai M. Sapra P. Bhushan KR. Curr. Med. Chem.  1999,  6:  195 
  • 4a Braun M. Galle D. Synthesis  1996,  819 
  • 4b Dolle RE. J. Comb. Chem.  2001,  3:  477 
  • 4c Dolle RE. J. Comb. Chem.  2002,  4:  369 
  • 4d Dolle RE. J. Comb. Chem.  2003,  5:  693 
  • 4e Dolle RE. J. Comb. Chem.  2004,  6:  623 
  • 5a Murphy BP. Pratt RF. Biochem. J.  1988,  256:  669 
  • 5b Nieschalk J. Schaumann E. Liebigs Ann. Chem.  1996,  141 
  • 6a Tsang WY. Dhanda A. Schofield CJ. Page MI. J. Org. Chem.  2004,  69:  339 
  • 6b Tsang WY. Dhanda A. Schofield CJ. Frere JM. Galleni M. Page MI. Bioorg. Med. Chem. Lett.  2004,  14:  1737 
  • 7 Murphy BP. Pratt RF. Biochem. J.  1988,  256:  669 
  • 8a Creary X. Zhu C. J. Am. Chem. Soc.  1995,  117:  5859 
  • 8b Creary X. Zhu C. Jiang Z. J. Am. Chem. Soc.  1996,  118:  12331 
  • 8c Creary X. Losch A. Org. Lett.  2008,  10:  4975 
  • 9a Förster W.-R. Isecke R. Spanka C. Schaumann E. Synthesis  1997,  942 
  • 9b Méndez L. Delpiccolo CML. Mata EG. Synlett  2005,  1563 
  • 9c Krasodomska M. Serda P. Monatsh. Chem.  2007,  138:  199 
  • 9d Nieschalk J. Spanka C. Schaumann E. Liebigs Ann.  1996,  135 
  • 9e Creary X. Burtch E. Jiang Z. J. Org. Chem.  2003,  68:  1117 
  • 9f Sakamoto M. Takahashi M. Arai W. Mino T. Yamaguchi K. Watanabe S. Fujita T. Tetrahedron  2000,  56:  6795 
  • 10a Adams JP. Paterson JR. J. Chem. Soc., Perkin Trans. 1  1999,  749 
  • 10b Adams JP. Paterson JR. J. Chem. Soc., Perkin Trans. 1  2000,  3695 
  • 10c Perekalin VV. Lipina ES. Berestovitskaya VM. Efremov DA. Nitroalkenes, Conjugated Nitro Compounds   Wiley & Sons; Chichester / UK: 1994. 
  • 10d Olah GA. Malhotra R. Narang SC. Nitration: Methods and Mechanisms   VCH; New York: 1989. 
  • 10e Ono N. The Nitro Group in Organic Synthesis   Wiley-VCH; New York: 2001. 
  • 11a Chandrasekhar S. Tiwari B. Parida BB. Reddy CR. Tetrahedron: Asymmetry  2008,  19:  495 
  • 11b Li H. Wang J. Zu L. Wang W. Tetrahedron Lett.  2006,  47:  2585 
  • 12a Muhkerjee AK. Ashare R. Chem. Rev.  1991,  91:  1 
  • 12b Stephensen H. Zaeagosa F. J. Org. Chem.  1997,  62:  6096 
  • 13a Marion N. Diez-González S. Nolan SP. Angew. Chem. Int. Ed.  2007,  46:  2988 
  • 13b Zeitler K. Angew. Chem. Int. Ed.  2005,  44:  7506 
  • 13c N-Heterocyclic Carbenes in Transition Metal Catalysis, In Topics in Organometallic Chemistry   Vol. 28:  Glorius F. Springer-Verlag; Berlin/Heidelberg: 2007. 
  • 13d Enders D. Niemeier O. Henseler A. Chem. Rev.  2007,  107:  5606 
  • 13e Huang X.-L. Chen X.-Y. Ye S. J. Org. Chem.  2009,  74:  7585 
  • 13f Zhang Y.-R. He L. Wu X. Shao P.-L. Ye S. Org. Lett.  2008,  10:  277 
  • 13g Wang X.-N. Shao P.-L. Lv H. Ye S. Org. Lett.  2009,  11:  4029 
  • 13h Lin H. Lv H. Zhang Y.-R. Ye S. J. Org. Chem.  2008,  73:  8101 
  • 14 Enders D. Niemeier O. Balensiefer T. Angew. Chem. Int. Ed.  2006,  45:  1463 
  • 15 Liu Q. Rovis T. J. Am. Chem. Soc.  2006,  128:  2552 
  • 16 Maki BE. Chan A. Phillips EM. Scheidt KA. Org. Lett.  2007,  9:  371 
  • 17a Glorius F. Burstein C. Angew. Chem. Int. Ed.  2004,  43:  6205 
  • 17b Sohn SS. Rosen EL. Bode JW. J. Am. Chem. Soc.  2004,  126:  14370 
  • 17c Chiang P.-C. Kaeobamrung J. Bode JW. J. Am. Chem. Soc.  2007,  129:  3520 
  • 17d Nair V. Vellalath S. Babu BP. Chem. Soc. Rev.  2008,  37:  2691 
  • 18 Sohn SS. Bode JW. Angew. Chem. Int. Ed.  2006,  45:  6021 
  • 19 Fukuda Y. Maeda Y. Kondo K. Aoyama T. Chem. Pharm. Bull.  2006,  54:  397 
  • 20a Yadav LDS. Singh S. Rai VK. Synlett  2010,  240 
  • 20b Yadav LDS. Rai VK. Singh S. Singh P. Tetrahedron Lett.  2010,  51:  1657 
  • 20c Yadav LDS. Kapoor R. . Synlett  2009,  1055 
  • 20d Yadav LDS. Kapoor R. . Synlett  2009,  3123 
  • 20e Yadav LDS. . Kapoor R. Tetrahedron Lett.  2009,  50:  5420 
  • 20f Yadav LDS. Srivastava VP. Patel R. Tetrahedron Lett.  2008,  49:  5652 
  • 22 Cossio FP. Arrieta A. Sierra MA. Acc. Chem. Res.  2008,  41:  925 
21

General Procedure for the Synthesis of 3-Nitro-1,4-diarylazetidine-2-thiones 4: A flame-dried round-bottom flask was charged with benzimidazolium salt 3a (0.20 mmol), β-nitroolefin 1 (1.0 mmol), aryl isothiocyanate 2 (1.0 mmol) and THF-t-BuOH (10:1, 5 mL) under positive pressure of nitrogen followed by addition of DBU (0.20 mmol) by using a syringe. The resulting solution was stirred for 6-8 h at room temperature (Table  [²] ). After completion of the reaction (monitored by TLC), the reaction mixture was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (hexane-EtOAc, 9:1) to afford analytically pure cis-4.
Characterization Data of Representative Compounds cis -4: Compound cis-4a: Yield: 86%; yellow solid; mp 135-137 ˚C. IR (KBr): 1621, 1605, 1556, 1460, 1232 cm. ¹H NMR (400 MHz, CDCl3/TMS): δ = 4.43 (d, J = 5.6 Hz, 1 H, 4-H), 4.82 (d, J = 5.6 Hz, 1 H, 3-H), 6.78-7.31 (m, 10 H, ArH). ¹³C NMR (100 MHz, CDCl3/TMS): δ = 61.1, 107.3, 121.6, 123.2, 126.8, 127.3, 128.3, 129.1, 138.5, 141.4, 199.9. MS (EI): m/z = 284 [M]+. Anal. Calcd for C15H12N2O2S: C, 63.42; H, 4.25; N, 9.86. Found: C, 63.71; H, 4.56; N, 9.72. Compound cis-4d: Yield: 87%; yellow solid; mp 146-148 ˚C. IR (KBr): 1619, 1600, 1565, 1465, 1240 cm. ¹H NMR (400 MHz, CDCl3/TMS): δ = 4.61 (d, J = 5.7 Hz, 1 H, 4-H), 5.10 (d, J = 5.7 Hz, 1 H, 3-H), 6.84-7.31 (m, 5 H, ArH), 7.86 (d, J = 8.4 Hz, 2 H, ArH), 8.33 (d, J = 8.4 Hz, 2 H, ArH). ¹³C NMR (100 MHz, CDCl3/TMS):
δ = 62.4, 105.7, 122.7, 123.8, 126.9, 127.5, 128.8, 140.8, 145.3, 147.6, 198.1. MS (EI): m/z = 329 [M]+. Anal. Calcd for C15H11N3O4S: C, 54.75; H, 3.37; N, 12.77. Found: C, 54.57; H, 3.66; N, 12.41. Compound cis-4h: Yield: 84%; yellow solid; mp 125-127 ˚C. IR (KBr): 1623, 1603, 1560, 1456, 1243 cm. ¹H NMR (400 MHz, CDCl3/TMS): δ = 4.50 (d, J = 5.4 Hz, 1 H, 4-H), 4.90 (d, J = 5.4 Hz, 1 H, 3-H), 6.79-7.68 (m, 12 H, ArH). ¹³C NMR (100 MHz, CDCl3/TMS): δ = 60.8, 106.4, 110.4, 118.2, 120.3, 121.5, 122.8, 124.2, 125.6, 126.7, 127.1, 127.5, 128.0, 136.1, 140.4, 143.4, 199.5. MS (EI): m/z = 334 [M]+. Anal. Calcd for C19H14N2O2S: C, 68.30; H, 4.22; N, 8.39. Found: C, 68.66; H, 4.42; N, 8.09. Compound cis-4k: Yield: 86%; yellow solid; mp 147-149 ˚C. IR (KBr): 1628, 1610, 1568, 1462, 1238 cm. ¹H NMR (400 MHz, CDCl3/TMS): δ = 4.61 (d, J = 5.6 Hz, 1 H, 4-H), 5.18 (d, J = 5.6 Hz, 2 H, 3-H), 6.97-7.54 (m, 7 H, ArH), 7.82 (d, J = 8.5 Hz, 2 H, ArH), 8.10 (d, J = 8.5 Hz, 1 H, ArH). ¹³C NMR (100 MHz, CDCl3/TMS):
δ = 61.9, 105.3, 112.1, 118.4, 120.6, 121.7, 122.5, 124.6, 125.7, 126.7, 127.4, 127.8, 136.4, 140.8, 143.7, 144.1, 200.1. MS (EI): m/z = 379 [M]+. Anal. Calcd for C19H13N3O4S: C, 60.20; H, 3.45; N, 11.09. Found: C, 60.35; H, 3.75; N, 10.77.