Synlett 2010(12): 1841-1844  
DOI: 10.1055/s-0030-1258089
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Fluorescence Polymer Incorporating Triazole and Benzo[2,1,3]thiadiazole Moieties for Ni²+ Detection

Xiaobo Huanga, Yu Donga, Jie Menga, Yixiang Cheng*a, Chengjian Zhu*b
a Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
Fax: +86(25)83317761; e-Mail: yxcheng@nju.edu.cn;
b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
Fax: +86(25)83317761; e-Mail: cjzhu@nju.edu.cn;
Further Information

Publication History

Received 11 March 2010
Publication Date:
10 June 2010 (online)

Abstract

Conjugated polymer could be obtained by the polymerization of 4,7-diethynylbenzo[2,1,3]thiadiazole (M-1) with 1,4-diazidobenzene (M-2) via click reaction. The polymer shows strong blue-green fluorescence due to the extended π-electronic structure in the main chain backbone. The responsive optical properties of the polymer on various transition metal ions were investigated by fluorescence spectroscopy. Compared with other transition metal cations, such as Co²+, Hg²+, Ag+, Cd²+, Cu²+ and Zn²+, Ni²+ showed the most pronounced fluorescence response in the presence of the conjugated polymer. The results indicate this kind of polymer with benzo[2,1,3]thiadiazole and triazole units can be used as a selective fluorescence sensor for Ni²+ detection.

    References and Notes

  • 1a McQuade DT. Pullen AE. Swager TM. Chem. Rev.  2000,  100:  2537 
  • 1b Thomas SW. Joly GD. Swager TM. Chem. Rev.  2007,  107:  1339 
  • 2a Nolan EM. Lippard SJ. Chem. Rev.  2008,  108:  3443 
  • 2b Kim IB. Dunkhorst A. Gilbert J. Bunz UHF. Macromolecules  2005,  38:  4560 
  • 2c Fan L.-J. Jones WE. J. Am. Chem. Soc.  2006,  128:  6784 
  • 3a Ashton WM. Nature (London)  1972,  237:  46 
  • 3b Prophete C. Carlson EA. Li Y. Duffy J. Steinetz B. Lasano S. Zelikoff JT. Fish Shellfish Immunol.  2006,  21:  325 
  • 4a Lin W. Yuan L. Cao Z. Feng J. Feng Y. Dyes Pigments  2009,  83:  14 
  • 4b Maisonneuve S. Fang Q. Xie J. Tetrahedron  2008,  64:  8716 
  • 4c Chattopadhyay N. Mallick A. Sengupta S. J. Photochem. Photobiol. A: Chem.  2006,  177:  55 
  • 4d Grabchev I. Chovelon J.-M. Nedelcheva A. J. Photochem. Photobiol. A: Chem.  2006,  183:  9 
  • 4e Xiao Y. Qian X. Tetrahedron Lett.  2003,  44:  2087 
  • 5a Zhang Y. Murphy CB. Jones WE. Macromolecules  2002,  35:  630 
  • 5b Feng J. Li Y. Yang M. J. Polym. Sci. Part A: Polym. Chem.  2009,  47:  222 
  • 5c Liu Y. Zhang S. Miao Q. Zheng L. Zong L. Cheng Y. Macromolecules  2007,  40:  4839 
  • 5d Huang X. Xu Y. Miao Q. Zong L. Hu H. Cheng Y. Polymer  2009,  50:  2793 
  • 6a Kolb HC. Finn MG. Sharpless KB. Angew. Chem. Int. Ed.  2001,  40:  2004 
  • 6b Rostovtsev VV. Green LG. Fokin VV. Sharpless KB. Angew. Chem. Int. Ed.  2002,  41:  2596 
  • 7a Droumaguet BL. Velonia K. Macromol. Rapid. Commun.  2008,  29:  1073 
  • 7b Lundberg P. Hawker CJ. Hult A. Malkoch M. Macromol. Rapid. Commun.  2008,  29:  998 
  • 7c Binder WH. Sachsenhofer R. Macromol. Rapid. Commun.  2008,  29:  952 
  • 7d Lodge TP. Macromolecules  2009,  42:  3827 
  • 8 Tamanini E. Katewa A. Sedger LM. Todd MH. Watkinson M. Inorg. Chem.  2009,  48:  319 
  • 9 Zheng L. Huang X. Shen Y. Cheng Y. Synlett  2010,  453 
  • 10a Huang X. Xu Y. Zhen L. Meng J. Cheng Y. Polymer  2009,  50:  5996 
  • 10b Huang X. Meng J. Dong Y. Cheng Y. Zhu C. J. Polym. Sci. Part A: Polym. Chem.  2010,  48:  997 
  • 10c Liu X. Zhu J. J. Phys. Chem. B  2009,  113:  8214 
  • 10d Liu S. Fang C. Zhao Q. Fan Q. Huang W. Macromol. Rapid Commun.  2008,  29:  1212 
  • 11 Neto BAD. Lopes AS. Ebeling G. Goncalves RS. Costa VEU. Quina FH. Dupont J. Tetrahedron  2005,  61:  10975 
  • 12 Minato M. Lahti PM. J. Am. Chem. Soc.  1997,  119:  2187 
  • 13 Karim MA. Cho Y. Park JS. Ryu TI. Lee MJ. Song M. Jin S. Lee JW. Gal Y. Macromol. Chem. Phys.  2008,  209:  1967 
  • 15a Justin KR. Lin JT. Velusamy M. Tao Y.-T. Chuen C.-H. Adv. Funct. Mater.  2004,  14:  83 
  • 15b Zhang X. Gorohmaru H. Kadowaki M. Kobayashi T. Ishi-i T. Thiemann T. Mataka S. J. Mater. Chem.  2004,  14:  1901 
14

Procedure for the Chiral Polymer: A mixture of M-1 (73.60 mg, 0.40 mmol), M-2 (64.00 mg, 0.40 mmol), 10 mol% sodium ascorbate (7.92 mg, 0.040 mmol) and 5 mol% Cu2SO4˙5H2O (4.99 mg, 0.020 mmol) was dissolved in a solvent mixture: THF (10 mL), t-BuOH (10 mL), and H2O (10 mL). The solution was stirred at 30-36 ˚C for 2 d under N2. The solvents were removed under reduced pressure and the residue was extracted with CHCl3 (2 × 50 mL). The organic layer was washed with an aq NH4OH solution, H2O and then dried over anhyd Na2SO4. After the solution was removed, the resulting polymer was precipitated into MeOH, and then filtered and washed with MeOH several times. Further purification could be conducted by dissolving the polymer in CHCl3 to precipitate in MeOH again. The polymer was dried in vacuum to give a yellow solid (100.01 mg, 72.2% yield). Polymer spectroscopic data: ¹H NMR (300 MHz, CDCl3): δ = 9.35 (s, 1 H), 9.22 (s, 1 H), 8.70-8.82 (m, 2 H), 7.92-8.20 (m, 4 H). FT-IR (KBr): 2960, 2923, 2094, 1521, 1239, 1038 cm. Anal. Calcd for C16H8N8S: C, 55.81; H, 2.34; N, 32.54. Found: C, 54.68; H, 2.12; N, 31.29.