Synlett 2010(16): 2490-2492  
DOI: 10.1055/s-0030-1258026
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Remarkable [3+2] Annulations of Electron-Rich Olefins with Unstabilized Azomethine Ylides

Jennifer E. Davoren*, David L. Gray*, Anthony R. Harris, Deane M. Nason, Wenjian Xu
Neurosciences Chemistry, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
Fax: +1(860)6867444; e-Mail: jennifer.e.davoren@pfizer.com;
Further Information

Publication History

Received 22 July 2010
Publication Date:
09 August 2010 (online)

Abstract

Herein we would like to communicate that an unstabilized azomethine ylide generated from commercial trimethylamine N-oxide will undergo a remarkable 1,3-dipolar cycloaddition in good yield with electron-rich and unpolarized olefins. A broad range of substituents on the alkenes are tolerated provided they are compatible with excess LDA. This demonstration of novel reaction scope should encourage others to try trimethylamine N-oxide as an azomethine ylide precursor in the synthesis of challenging 3,4-di­substituted pyrrolidines.

    References and Notes

  • 1a Lewis JR. Nat. Prod. Rep.  2001,  18:  95 
  • 1b O’Hagan D. Nat. Prod. Rep.  2000,  17:  435 
  • 2 Fache F. Schulz E. Tommasino ML. Lemaire M. Chem. Rev.  2000,  100:  2159 
  • For select recent examples, see:
  • 3a Fish PV. Andrews MD. Fray MJ. Stobie A. Wakenhut F. Whitlock GA. Bioorg. Med. Chem. Lett.  2009,  19:  2829 
  • 3b Fish PV. Fray MJ. Stobie A. Wakenhut F. Whitlock GA. Bioorg. Med. Chem. Lett.  2007,  17:  2022 
  • 3c Kohrt JT. Bigge CF. Bryant JW. Casimiro-Garcia A. Chi L. Cody WL. Dahring T. Dudley DA. Filipski KJ. Haarer S. Heemstra R. Janiczek N. Narasimhan L. McClanahan T. Peterson JT. Sahasrabudhe V. Schaum R. Van Huis CA. Welch KM. Zhang E. Leadley RJ. Edmunds JJ. Chem. Biol. Drug Des.  2007,  70:  100 
  • For recent reviews, see:
  • 4a Coldham I. Hufton R. Chem. Rev.  2005,  105:  2765 
  • 4b Pandey G. Banerjee P. Gadre SR. Chem. Rev.  2006,  106:  4484 
  • 5 Padwa A. Dent W. J. Org. Chem.  1987,  52:  235 
  • 6 Lown JW. 1,3-Dipolar Cycloaddition Chemistry   Vol. 1:  Padwa A. Wiley; New York: 1984.  Chap. 6.
  • 7 Beugelmans R. Negron G. Roussi G. J. Chem. Soc., Chem. Commun.  1983,  31 
  • 8a Beugelmans R. Benadjila-Iguertsira L. Chastanet J. Negron G. Roussi G. Can. J. Chem.  1985,  63:  725 
  • 8b Beugelmans R. Chastanet J. Roussi G. Heterocycles  1987,  26:  3197 
  • 8c Beugelmans R. Chastanet J. Roussi G. Heterocycles  1987,  26:  3197 
  • 10a De B.. DeBernardis JF. Prasad R. Synth. Commun.  1988,  18:  481 
  • 10b Negron G. Calderon G. Vazquez F. Lomas L. Cardenas J. Marquez C. Gavino R. Synth. Commun.  2002,  32:  1977 
  • 10c Kemperman GJ, Stuk TL, and Van Der Linden JJM. inventors;  WO2008003460. 
  • 11 Olofson RA. Martz JT. Senet JP. Piteau M. Malfroot T. J. Org. Chem.  1984,  49:  2081 
9

Representative Procedure
Commercial LDA (2.5 M in THF, 3.1 mL, 4.7 mmol, 4.5 equiv) was added to a solution of (E)-1,2-dimethoxy-4-styrylbenzene (250 mg, 1.0 mmol, 1 equiv) and trimethyl-amine N-oxide 4 (117 mg, 1.6 mmol, 1.5 equiv) in anhyd THF (10 mL) at 0 ˚C. After 1 h, the reaction was quenched with H2O and extracted with EtOAc. The combined organic layers were dried (Na2SO4) and concentrated under reduced pressure. The crude residue was purified by flash chroma-tography eluting with CH2Cl2-MeOH (95:5) to give 285 mg (92%) of trans-3,4-disubstituted pyrrolidine 8 as a yellow oil: ¹H NMR (400 MHz, CDCl3): δ = 7.26-7.12 (m, 5 H), 6.75-6.70 (m, 2 H), 6.68 (s, 1 H), 3.81 (s, 3 H), 3.78 (s, 3 H), 3.36-3.26 (m, 2 H), 3.12-3.06 (m, 2 H), 2.87-2.80 (m, 2 H), 2.44 (s, 3 H) ppm. LC-MS: m/z = 298.1 [M + 1].

12

Representative Procedure
A solution of N-methylpyrrolidine 8 (255 mg, 0.9 mmol) in neat ACE-Cl (3 mL) was irradiated in a microwave reactor at 170 ˚C for 30 min. MeOH (3 mL) was added to the mixture and thermally refluxed for an additional 1 h. The crude reaction mixture was purified by ion exchange on a MP-TsOH column to give 51 mg (21%) of pyrrolidine 11 as a pale yellow oil: ¹H NMR (400 MHz, CDCl3): δ = 7.26-7.20 (m, 2 H), 7.18-7.12 (m, 3 H), 6.73-6.70 (m, 1 H), 6.70-6.66 (m, 1 H), 6.62 (d, J = 2.0 Hz, 1 H), 3.79 (s, 3 H), 3.75 (s, 3 H), 3.66-3.54 (m, 2 H), 3.35-3.25 (m, 2 H), 3.24-3.14 (m, 2 H), 2.62 (br s, 1 H) ppm. LC-MS: m/z = 284.0 [M + 1].