Abstract
Highly site-selective Mukaiyama-Michael additions of silyl
ketene imines to α,β-unsaturated aldehydes and
ketones are described. The combination of silicon tetrachloride
and a chiral bisphosphoramide provides an effective catalyst system
for promoting the addition of silyl ketene imines to a variety of
aromatic enals with high site selectivity and moderate to good diastereo-
and enantioselectivity.
Key words
Lewis base - asymmetric catalysis - Michael
addition - aldehydes - quaternary carbon
References and Notes
For recent reviews, see:
<A NAME="RY00710ST-1A">1a </A>
Denissova I.
Barriault L.
Tetrahedron
2003,
59:
10105
<A NAME="RY00710ST-1B">1b </A>
Douglas CJ.
Overman LE.
Proc.
Natl. Acad. Sci. U.S.A.
2004,
101:
5363
<A NAME="RY00710ST-1C">1c </A>
Trost BM.
Chunhui J.
Synthesis
2006,
369
(d) For a recent monograph, see:
Quaternary
Stereocenters: Challenges and Solutions for Organic Synthesis
Christoffers J.
Baro A.
Wiley-VCH;
Weinheim:
2005.
For a recent example of a Michael
addition reaction to set quaternary stereogenic centers, see:
<A NAME="RY00710ST-2A">2a </A>
Kawato Y.
Takahashi N.
Kumagai N.
Shibasaki M.
Org. Lett.
2010,
12:
1484
For reviews, see:
<A NAME="RY00710ST-2B">2b </A>
Jautze S.
Peters R.
Synthesis
2010,
365
<A NAME="RY00710ST-2C">2c </A>
Ref 1d, Chap. 4.
For reviews on catalytic, asymmetric
Michael reactions, see:
<A NAME="RY00710ST-3A">3a </A>
Tomioka K.
Nagaoka Y. In Comprehensive Asymmetric
Catalysis
Vol. 3:
Jacobsen EN.
Pfaltz A.
Yamamoto H.
Springer;
Berlin:
1999.
Chap.
31.1.
<A NAME="RY00710ST-3B">3b </A>
Kanai M.
Shibasaki M. In Catalytic
Asymmetric Synthesis
2nd ed.:
Ojima I.
Wiley;
New York:
2000.
p.569
<A NAME="RY00710ST-3C">3c </A>
Sibi M.
Manyem S.
Tetrahedron
2000,
56:
8033
<A NAME="RY00710ST-3D">3d </A>
Krause N.
Hoffmann-Roder A.
Synthesis
2001,
171
<A NAME="RY00710ST-3E">3e </A>
Christoffers J.
Koripelly G.
Rosiak A.
Rossle M.
Synthesis
2007,
1279
<A NAME="RY00710ST-4">4 </A>
Bernardi A.
Karamfilova K.
Sanguinetti S.
Scolastico C.
Tetrahedron
1997,
53:
13009
For a discussion of these problems
and potential solutions, see:
<A NAME="RY00710ST-5A">5a </A>
Das JP.
Chechik H.
Marek I.
Nature
Chem.
2009,
1:
128
<A NAME="RY00710ST-5B">5b </A>
Manthorpe JM.
Gleason JL.
J.
Am. Chem. Soc.
2001,
123:
2091
<A NAME="RY00710ST-6A">6a </A>
Narasaka K.
Soai K.
Mukaiyama T.
Chem. Lett.
1974,
1223
<A NAME="RY00710ST-6B">6b </A>
Oare DA.
Heathcock CA. In Topics in Stereochemistry
Vol.
20:
Eliel EL.
Wilen SH.
Wiley;
New
York:
1991.
p.125-170
<A NAME="RY00710ST-7">7 </A>
Takenaka N.
Abell JP.
Yamamoto H.
J.
Am. Chem. Soc.
2007,
129:
742
For leading references on catalytic,
asymmetric synthesis of secondary and tertiary stereogenic centers
using Lewis acid catalyzed MM reaction, see:
<A NAME="RY00710ST-8A">8a </A>
Bernardi A.
Colombo G.
Scolastico C.
Tetrahedron
Lett.
1996,
37:
8921
<A NAME="RY00710ST-8B">8b </A>
Kitajima H.
Ito K.
Katsuki T.
Tetrahedron
1997,
53:
17015
<A NAME="RY00710ST-8C">8c </A>
Kitajima H.
Katsuki T.
Synlett
1997,
568
<A NAME="RY00710ST-8D">8d </A>
Nishikori H.
Ito K.
Katsuki T.
Tetrahedron: Asymmetry
1998,
9:
1165
<A NAME="RY00710ST-8E">8e </A>
Evans DA.
Rovis T.
Kozlowski MC.
Tedrow JS.
J.
Am. Chem. Soc.
1999,
121:
1994
<A NAME="RY00710ST-8F">8f </A>
Evans DA.
Willis MC.
Johnston JN.
Org. Lett.
1999,
1:
865
<A NAME="RY00710ST-8G">8g </A>
Evans DA.
Scheidt KA.
Johnston JN.
Willis MC.
J.
Am. Chem. Soc.
2001,
123:
4480
<A NAME="RY00710ST-8H">8h </A>
Harada T.
Iwai H.
Takatsuki H.
Fujita K.
Kubo M.
Oku A.
Org. Lett.
2001,
3:
2101
<A NAME="RY00710ST-8I">8i </A>
Desimoni G.
Faita G.
Filippone S.
Mella M.
Zampori MG.
Zema M.
Tetrahedron
2001,
57:
10203
<A NAME="RY00710ST-8J">8j </A>
Wang X.
Harada T.
Iwai H.
Oku A.
Chirality
2003,
15:
28
<A NAME="RY00710ST-8K">8k </A>
Wang X.
Adachi S.
Iwai H.
Takatsuki H.
Fujita K.
Kubo M.
Oku A.
Harada T.
J.
Org. Chem.
2003,
68:
10046
<A NAME="RY00710ST-8L">8l </A>
Suga H.
Kitamura T.
Kakehi A.
Baba T.
Chem. Commun.
2004,
1414
<A NAME="RY00710ST-8M">8m </A>
Ishihara K.
Fushimi M.
Org. Lett.
2006,
8:
1921
<A NAME="RY00710ST-8N">8n </A>
Yang H.
Kim S.
Synlett
2008,
555
For leading references on catalytic,
asymmetric synthesis of secondary and tertiary stereogenic
centers using organocatalyzed MM reactions, see:
<A NAME="RY00710ST-9A">9a </A>
Brown SP.
Goodwin NC.
MacMillan DWC.
J. Am. Chem. Soc.
2003,
125:
1192
<A NAME="RY00710ST-9B">9b </A>
Wang W.
Li H.
Wang J.
Org.
Lett.
2005,
7:
1637
<A NAME="RY00710ST-9C">9c </A>
Robichaud J.
Tremblay F.
Org. Lett.
2006,
8:
597
<A NAME="RY00710ST-9D">9d </A>
Borths CJ.
Carrera DE.
MacMillan
DWC.
Tetrahedron
2009,
65:
6746
<A NAME="RY00710ST-10">10 </A> For additions to aldehydes, see:
Denmark SE.
Wilson TW.
Burk MT.
Heemstra JR.
J. Am. Chem. Soc.
2007,
129:
14864
<A NAME="RY00710ST-11">11 </A> For additions to acid chlorides
and anhydrides, see:
Mermerian AH.
Fu GC.
Angew. Chem. Int. Ed.
2005,
44:
949
<A NAME="RY00710ST-12A">12a </A>
Tennant G. In Comprehensive
Organic Chemistry
Vol. 2:
Barton DHR.
Olis WD.
Sutherland IO.
Pergamon;
New
York:
1979.
p.539-550
<A NAME="RY00710ST-12B">12b </A>
Allen FH.
Garner SE. In The Chemistry of Triple Bonded Functional Groups
Vol.
2:
Patai S.
Wiley;
New
York:
1994.
<A NAME="RY00710ST-13">13 </A>
Cazeau P.
Llonch J.-P.
Simonin-Dabescat F.
Frainnet E.
J. Organomet. Chem.
1976,
105:
145
<A NAME="RY00710ST-14">14 </A> For review of Lewis base catalysis,
see:
Denmark SE.
Beutner GL.
Angew. Chem. Int. Ed.
2008,
47:
1560
<A NAME="RY00710ST-15A">15a </A>
Denmark SE.
Wynn T.
J.
Am. Chem. Soc.
2001,
123:
6199
<A NAME="RY00710ST-15B">15b </A>
Denmark SE.
Wynn T.
Beutner GL.
J. Am. Chem. Soc.
2002,
124:
13405
<A NAME="RY00710ST-15C">15c </A>
Denmark SE.
Fan Y.
J.
Am. Chem. Soc.
2003,
125:
7825
<A NAME="RY00710ST-15D">15d </A>
Denmark SE.
Beutner GL.
J.
Am. Chem. Soc.
2003,
125:
7800
<A NAME="RY00710ST-15E">15e </A>
Denmark SE.
Heemstra JR.
Org.
Lett.
2003,
5:
2303
<A NAME="RY00710ST-15F">15f </A>
Denmark SE.
Heemstra JR.
Synlett
2004,
13:
2411
<A NAME="RY00710ST-15G">15g </A>
Denmark SE.
Beutner GL.
Wynn T.
Eastgate MD.
J.
Am. Chem. Soc.
2005,
127:
3774
<A NAME="RY00710ST-15H">15h </A>
Denmark SE.
Fan Y.
J. Org. Chem.
2005,
70:
9667
<A NAME="RY00710ST-15I">15i </A>
Denmark SE.
Bui T.
J. Org. Chem.
2005,
70:
10190
<A NAME="RY00710ST-15J">15j </A>
Denmark SE.
Heemstra JR.
J.
Org. Chem.
2007,
72:
5668
<A NAME="RY00710ST-15K">15k </A>
Denmark SE.
Chung W.-J.
J. Org.
Chem.
2008,
73:
4582
<A NAME="RY00710ST-15L">15l </A>
Denmark SE.
Fujimori S. In
Modern Aldol Reactions
Mahrwald R.
Wiley-VCH;
Weinheim:
2004.
Chap.
7.
<A NAME="RY00710ST-16">16 </A>
See ref. 15j.
<A NAME="RY00710ST-17">17 </A>
For recent preparation of SKIs, see
ref .10.
<A NAME="RY00710ST-18">18 </A>
For example, the observed selectivity
could result from a single catalyst-enone complex if reaction
through an achiral pathway was competitive with the catalyzed addition
to form only one of the diastereomers.
<A NAME="RY00710ST-19">19 </A> The amount of 15 mol% should
equate to 1.73× the rate at 5 mol%, based on kinetic
studies of the SiCl4 /(R ,R )-2 catalyst system,
see:
Denmark SE.
Eklov BM.
Yao PJ.
Eastgate MD.
J. Am. Chem. Soc.
2009,
131:
11770
<A NAME="RY00710ST-20">20 </A> Previous studies have shown that
trichlorosilyl enolates are competent nucleophiles for Lewis base
catalyzed aldol additions, see:
Denmark SE.
Stavenger RA.
J. Am. Chem. Soc.
2000,
122:
8837
<A NAME="RY00710ST-21">21 </A>
The crystallographic coordinates of 7 have been deposited with the Cambridge
Crystallographic Data Centre (CCDC); deposition no. 776146. These
data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.
<A NAME="RY00710ST-22">22 </A>
For computational and mechanistic
studies, see ref. 15g. For a full kinetic analysis, see ref. 19.