RSS-Feed abonnieren
DOI: 10.1055/s-0029-1219584
A Simple Synthesis of N β-Fmoc/Z-Amino Alkyl Thiols and their use in the Synthesis of N β-Fmoc/Z-Amino Alkyl Sulfonic Acids
Publikationsverlauf
Publikationsdatum:
17. März 2010 (online)

Abstract
A simple and efficient protocol for the synthesis of N β-Fmoc/Z-amino alkyl thiols is described. The approach uses sodium pyrosulfite-mediated hydrolysis of isothiouronium salts resulting from the reaction between N-protected aminoalkyl iodides and thiourea. N-Protected taurines were prepared through performic acid oxidation of the thiols and the products were further utilized for the synthesis of dipeptidosulfonamides.
Key words
alkyl iodides - thiourea - alkyl thiols - N-protected taurines - isothiuronium salts
- 1
Penning TD.Askonas LJ.Djuric SW.Haack RA.Yu SS.Michener ML.Krivi GG.Pyla EY. Bioorg. Med. Chem. 1995, 5: 2517 - 2a
Pedras MSC.Zheng Q.-N.Sarwar MG. Org. Biomol. Chem. 2007, 5: 1167Reference Ris Wihthout Link - 2b
Skey J.O’Reilly RK. Chem. Commun. 2008, 4183Reference Ris Wihthout Link - 3
Ocain TD.Rich DH. Biochem. Biophys. 1987, 145: 1038 - 4
Park JD.Kim DH. J. Med. Chem. 2002, 45: 911 - 5
Hesek D.Toth M.Krchnak V.Fridman R.Mobashery S. J. Org. Chem. 2006, 71: 161 - 6
Salvador LA.Elofsson M.Kihlberg J. Tetrahedron 1995, 51: 5643 - 7a
Shalaby MA.Grote CW.Rapoport H. J. Org. Chem. 1996, 61: 9045Reference Ris Wihthout Link - 7b
Yamashiro D.Li CH. Int. J. Pept. Protein Res. 1988, 31: 322Reference Ris Wihthout Link - 8a
Spatola AF.Edwards JV. Biopolymers 1986, 25: 229Reference Ris Wihthout Link - 8b
Spatola AF.Bettag AL. J. Org. Chem. 1981, 46: 2393Reference Ris Wihthout Link - 9
Bienvenue DL.Bennett B.Holz RC. J. Inorg. Biochem. 2000, 78: 43 - 10
Wynne JH.Jensen SD.Snow AW. J. Org. Chem. 2003, 68: 3733 - 11
Dehmel F.Weinbrenner S.Julius H.Ciossek T.Maier T.Stengel T.Fettis K.Burkhardt C.Wieland H.Beckers T. J. Med. Chem. 2008, 51: 3985 - 12
Hu L.Zhu H.Du-Ming D.Xu J. J. Org. Chem. 2007, 72: 4543 - 13
Wipf P.Jayasuriya N. Chirality 2008, 20: 425 - 14
Choi J.Yoon NM. Synth. Commun. 1995, 25: 2655 - 15
Ellis LM.Reid EE. J. Am. Chem. Soc. 1932, 54: 1674 - 16
Snow SW.Foos EE. Synthesis 2003, 509 - 17
Choi J.Yoon NM. Synthesis 1995, 373 - 18
Myllymaki VT.Lindvall MK.Koskinen AMP. Tetrahedron 2001, 57: 4629 - 19
Tseng S.-L.Yang T.-K. Tetrahedron: Asymmetry 2005, 16: 773 - 20
Mercey G.Bregeon D.Gaumont A.-C.Levillain J.Gulea M. Tetrahedron Lett. 2008, 49: 6553 - 21
Meinzer A.Breckel A.Thaher BA.Manicone N.Otto H.-H. Helv. Chim. Acta 2004, 87: 90 - 22
Xu JX. Chin. J. Org. Chem. 2003, 23: 1 - 23
Huxtable RJ. Physiol. Rev. 1992, 72: 101 - 24
Wickberg B. Acta Chem. Scand. 1957, 11: 506 - 25a
Lowik DWPM.Liskamp RMJ. Eur. J. Org. Chem. 2000, 1219Reference Ris Wihthout Link - 25b
de Bont DBA.Moree WJ.Liskamp RMJ. Bioorg. Med. Chem. 1996, 4: 667Reference Ris Wihthout Link - 25c
de Jong R.Rijkers DTS.Liskamp RMJ. Helv. Chim. Acta 2002, 85: 4230Reference Ris Wihthout Link - 26
Carpino LA. Acc. Chem. Res. 1987, 20: 401 - 27a
Rodriguez M.Llinares M.Doulut S.Heitz A.Maranez J. Tetrahedron Lett. 1991, 32: 923Reference Ris Wihthout Link - 27b
Kokotos G.Noula C. J. Org. Chem. 1996, 61: 6994Reference Ris Wihthout Link - 28a
Mondal S.Fan E. Synlett 2006, 306Reference Ris Wihthout Link - 28b
Caputo R.Cassano E.Longobardo L.Palumbo G. Tetrahedron 1995, 51: 12337Reference Ris Wihthout Link - 29
Liane S.-U.Racero JC.Antonio JM.-S.Rosario S.-G.James RH.Maykel P.-G.Collado IG. J. Agric. Food Chem. 2009, 57: 2420 - 30
Gamblin DP.Granier P.van Kasteren S.Oldham NJ.Fairbanks AJ.Davis BJ. Angew. Chem. Int. Ed. 2006, 45: 4007 - 31
Monnee MCF.Marijne MF.Brouwer AJ.Liskamp RMJ. Tetrahedron Lett. 2000, 41: 7991 - 32a
Higashiura H.Morino H.Matsuura H.Toyomaki Y.Ienaga K. J. Chem. Soc., Perkin Trans. 1 1989, 1479Reference Ris Wihthout Link - 32b
Braghiroli D.Di Bella M. Tetrahedron: Asymmetry 1996, 7: 2745Reference Ris Wihthout Link - 33
Higashiura K.Lenaga K. J. Org. Chem. 1992, 57: 764 - 34
Gude M.Piarulli U.Potenza D.Salom B.Gennari C. Tetrahedron Lett. 1996, 37: 8589 - 35
Brouwer A.Monnee MCF.Liskamp RMJ. Synthesis 2000, 1579 - 36a
Lowik DWPM.Liskamp RMJ. Eur. J. Org. Chem. 2000, 1219Reference Ris Wihthout Link - 36b
Moree WJ.van der Marcel GA.Liskamp RMJ. J. Org. Chem. 1995, 60: 5157Reference Ris Wihthout Link - 36c
Lowik DWPM.Mulders SJE.Cheng Y.Shao Y.Liskamp RMJ. Tetrahedron Lett. 1996, 37: 8253 ; see also ref. 31Reference Ris Wihthout Link - 37a
Wang B.Zhang W.Zhang L.Du D.-M.Liu G.Xu J. Eur. J. Org. 2008, 350Reference Ris Wihthout Link - 37b
Xu J. Tetrahedron: Asymmetry 2002, 13: 1129Reference Ris Wihthout Link - 37c
Xu J. Synthesis 2004, 276Reference Ris Wihthout Link - 37d
Xu J.Xu S.Zhang Q. Heteroat. Chem. 2005, 16: 466Reference Ris Wihthout Link - 38
Hu L.Zhu H.Du D.-M.Xu J. J. Org. Chem. 2007, 72: 4543 - 39a
Gennari C.Solam B.Potenza D.Williams A. Angew. Chem. Int. Ed. Engl. 1994, 33: 2067Reference Ris Wihthout Link - 39b
de Bont DBA.Dijkstra DH.den Hratog JAJ.Liskamp RMJ. Bioorg. Med. Chem. Lett. 1996, 24: 3035Reference Ris Wihthout Link
References and Notes
General procedure for 2a-l: A solution of N β-Fmoc/Z-amino alkyl iodide 1a-l (1.0 mmol) and thiourea (2.1 g, 3.0 mmol) in anhydrous acetone (10.0 mL) was heated at reflux under an argon atmosphere for 8-10 h. The consumption of the iodide was monitored by TLC. The solvent was evaporated under vacuum and the isothouronium salt was isolated as the pure compound by recrystallization from acetone-diethyl ether.
41Spectroscopic data for 2d: IR (KBr): 1703, 1657, 3211 cm-¹; ¹H NMR (400 MHz, DMSO-d 6): δ = 0.91 (2 × d, J = 6.1 Hz, 6 H), 1.76-2.08 (m, 1 H), 2.98-3.10 (m, 2 H), 3.96-4.01 (m, 1 H), 4.18 (t, J = 6.9 Hz, 1 H), 4.39 (d, J= 4.9 Hz, 2 H), 5.01 (br, 1 H), 6.94-7.77 (m, 8 H), 9.10 (br, 2 H), 9.32 (br, 2 H); ¹³C NMR (100 MHz, DMSO-d 6): δ = 17.8, 25.4, 30.1, 47.3, 55.2, 66.1, 119.5, 124.8, 125.5, 127.0, 127.9, 141.0, 143.8, 144.2, 156.3, 161.2.
42General procedure for 3a-l: Isothiouronium salt 2 (1.0 mmol) and sodium pyrosulfite (1.5 mmol) were dissolved in CH2Cl2 (10.0 mL) and H2O (2.0 mL) and heated at reflux under argon atmosphere until completion of reaction. The mixture was diluted with excess CH2Cl2, and the organic extract was washed with H2O (2 × 10 mL) and brine (10 mL), and dried over anhydrous sodium sulfate. Solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel; 100-150 mesh; EtOAc-hexane, 15%).
43Selected spectroscopic data: 3c: IR (KBr): 1711 cm-¹; ¹H NMR (400 MHz, CDCl3): δ = 2.23 (s, 1 H), 2.81-3.05 (m, 4 H), 3.65 (d, J = 3.5 Hz, 2 H), 3.71-3.97 (m, 1 H), 4.17 (t, J = 6.8 Hz, 1 H), 5.02 (br, 1 H), 6.97-7.67 (m, 13 H); ¹³C NMR (100 MHz, CDCl3): δ = 30.8, 40.3, 47.1, 52.8, 67.4, 120.4, 125.6, 127.0, 127.8, 128.5, 129.3, 137.0, 141.7, 144.5, 155.8. 3j: IR (KBr): 1694 cm-¹; ¹H NMR (400 MHz, CDCl3): δ = 0.85 (t, J = 2.8 Hz, 3 H), 0.96 (d, J= 4.2 Hz, 3 H), 1.12-1.35 (m, 2 H), 2.05 (s, 1 H), 2.32-2.45 (m, 1 H), 2.71 (dd, J = 2.7 Hz, 1 H), 3.01 (dd, J = 3.1 Hz, 1 H), 3.56-3.71 (m, 1 H), 4.90 (br, 1 H), 5.05 (s, 2 H), 7.21 (s, 5 H); ¹³C NMR (100 MHz, CDCl3): δ = 10.5, 13.6, 24.2, 28.6, 39.4, 57.6, 64.8, 127.2, 128.0, 128.8, 137.6, 155.8.
44General experimental procedure for 4a-l: H2O2 (30%, 15.0 mL) was dissolved in 98% formic acid (35.0 mL) at 0 ˚C and the mixture was stirred at this temperature for 1 h to afford performic acid. Fmoc/Z-amino alkyl thiol in 98% formic acid (3.0 mL) solution was added dropwise to the performic acid solution and the resulting reaction mixture was stirred at r.t. for 1 d. After removal of the solvent, the product was purified by column chromatography (CHCl3-MeOH, 8:1) to afford N-protected taurines as colorless solids.
45Selected spectroscopic data: 4b: IR (KBr): 1708, 1211, 1118 cm-¹; ¹H NMR (400 MHz, DMSO-d 6): δ = 1.11 (d, J = 6.53 Hz, 3 H), 2.58 (dd, J = 2.9 Hz, 1 H), 2.78 (dd, J = 3.0 Hz, 1 H), 3.25-3.45 (m, 1 H), 4.15 (t, J = 6.8 Hz, 1 H), 4.41 (d, J = 4.8 Hz, 2 H), 6.13 (br, 1 H), 7.02-7.57 (m, 8 H); ¹³C NMR (100 MHz, DMSO-d 6): δ = 17.5, 41.2, 46.8, 57.5, 64.8, 120.1, 125.2, 126.9, 127.8, 141.1, 142.8, 155.03. 4j: IR (KBr): 1691, 1217, 1170 cm-¹; ¹H NMR (400 MHz, DMSO-d 6): δ = 0.76 (t, J = 2.3 Hz, 3 H), 0.98 (d, J = 5.0 Hz, 3 H), 1.31-1.40 (m, 2 H), 2.12-2.31 (m, 1 H), 2.75 (dd, J = 2.5 Hz, 1 H), 3.03 (dd, J = 3.1 Hz, 1 H), 3.57-3.62 (m, 1 H), 4.68 (s, 2 H), 5.92 (br, 1 H), 6.98 (s, 5 H); ¹³C NMR (100 MHz, DMSO-d 6): δ = 0.2, 13.6, 24.6, 37.8, 45.8, 55.3, 64.4, 128.1, 128.8, 137.5, 154.8.
46General procedure for the synthesis of Fmoc-Xaa-ψ[CH 2 SO 2 Cl](5): To a suspension of 4 (1.0 mmol) in anhydrous CH2Cl2 (10.0 mL) at 0 ˚C, triphosgene (0.7 mmol) and a catalytic amount of DMF were added and the mixture was stirred overnight. The mixture was diluted with CH2Cl2 (10 mL) and the organic layer was washed with H2O (2 × 10 mL) and brine (10 mL), then dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (silica gel, 100-150 mesh; EtOAc-hexane, 10%).
47Spectroscopic data for 5a: Yield 78%; white solid; mp 151 ˚C. IR (KBr): 1708 cm-¹; ¹H NMR (400 MHz, CDCl3): δ = 1.35 (d, J = 6.0 Hz, 3 H), 3.58 (dd, J = 2.8 Hz, 1 H), 3.65 (d, J = 3.5 Hz, 2 H), 3.97-4.08 (m, 1 H), 4.20 (t, J = 6.8 Hz, 1 H), 4.31-4.39 (m, 1 H), 5.11 (br, 1 H), 7.04-7.70 (m, 8 H); ¹³C NMR (100, MHz, CDCl3): δ = 19.3, 44.0, 46.9, 66.8, 69.1, 119.5, 125.6, 127.2, 128.0, 141.2, 143.8, 155.5.
48General procedure for the synthesis of 6: To an ice-cooled solution of N-Fmoc-Xaa-ψ[CH2SO2Cl] (1.0 mmol) in anhydrous CH2Cl2, was added a solution of amino acid methyl ester in CH2Cl2 (1.0 mmol, obtained by neutralizing the corresponding hydrochloride salt using zinc dust), followed by Et3N (1.0 mmol). The resulting suspension was stirred for 6-8 h. After dilution with excess CH2Cl2 (25 mL), it was washed with 1M HCl (2 × 10 mL), sat. NaHCO3 (2 × 10 mL), and brine (10 mL), dried over anhydrous sodium sulfate and the solvent was evaporated under reduced pressure. The crude product was purified by column chromatography (silica gel, 100-150 mesh; EtOAc-hexane, 30%).
49Selected spectroscopic data: 6a: White solid; mp 163 ˚C. ¹H NMR (400 MHz, DMSO-d 6): δ = 0.98-1.12 (m, 6 H), 1.23 (d, J = 5.9 Hz, 3 H), 2.08-2.15 (m, 1 H), 3.06 (d, J = 4.5 Hz, 1 H), 3.21 (s, 3 H), 3.78 (dd, J = 2.6 Hz, 1 H), 3.98 (t, J = 3.8 Hz, 1 H), 4.01 (dd, J = 3.0 Hz, 1 H), 4.12 (d, J = 5.8 Hz, 2 H), 4.21-4.31 (m, 1 H), 5.06-5.11 (br, 2 H), 7.12-7.69 (m, 8 H); ¹³C NMR (100 MHz, DMSO-d 6): δ = 7.0, 18.2, 30.6, 37.2, 47.3, 50.3, 63.2, 66.7, 120.2, 125.6, 127.3, 127.8, 141.3, 143.6, 154.6, 170.2. 6c: White solid; mp 143 ˚C. ¹H NMR (400 MHz, DMSO-d 6): δ = 1.17 (d, J = 5.4 Hz, 3 H), 3.10 (s, 3 H), 3.59 (dd, J = 2.2 Hz, 1 H), 3.63-3.75 (m, 1 H), 4.04 (s, 1 H), 4.12 (d, J = 5.6 Hz, 2 H), 5.23-5.64 (br, 2 H), 7.12-7.82 (m, 13 H); ¹³C NMR (100 MHz, DMSO-d 6): δ = 18.9, 34.5, 50.6, 54.8, 62.7, 66.1, 47.4, 120.6, 125.1, 127.4, 127.1, 141.0, 143.1, 155.0, 170.1.