Synlett 2009(15): 2375-2381  
DOI: 10.1055/s-0029-1217739
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Celebrating 20 Years of SYNLETT - Special Essay: General Procedure for the Palladium-Catalyzed Selective Hydrophosphorylation of Alkynes

Valentine P. Ananikov*a, Levon L. Khemchyana, Irina P. Beletskaya*b
a Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation
Fax: +7(499)1355328; e-Mail: val@ioc.ac.ru;
b Chemistry Department, Lomonosov Moscow State University, Vorob’evy gory, Moscow 119899, Russian Federation
Fax: +7(495)9393618; e-Mail: beletska@org.chem.msu.ru;
Further Information

Publication History

Received 8 May 2009
Publication Date:
27 August 2009 (online)

Abstract

A novel catalytic system has been developed to accomplish the hydrophosphorylation of terminal and internal alkynes with high isolated yields (up to 96%) and excellent regio- and stereo­selectivity (>99:1). The key factor was to apply a low-ligated palladium/triphenylphosphane (1:2) catalytic system in the presence of a catalytic amount of trifluoroacetic acid. The catalytic system so developed has been applied successfully to permit the formation of diverse alkenylphosphonates utilizing a variety of available H-phos­phonates and alkynes.

    References

  • 1a Catalytic Heterofunctionalization   Togni A. Grützmacher H. Wiley-VCH; Weinheim: 2001. 
  • 1b Alonso F. Beletskaya IP. Yus M. Chem. Rev.  2004,  104:  3079 
  • 1c Beller M. Seayad J. Tillack A. Jiao H. Angew. Chem. Int. Ed.  2004,  43:  3368 
  • 1d Suginome M. Ito Y. J. Organomet. Chem.  2003,  685:  218 
  • 1e Suginome M. Ito Y. J. Organomet. Chem.  2003,  680:  43 
  • 1f Kondo T. Mitsudo T. Chem. Rev.  2000,  100:  3205 
  • 2a Beletskaya IP. Ananikov VP. Eur. J. Org. Chem.  2007,  3431 
  • 2b Beletskaya IP. Ananikov VP. Pure Appl. Chem.  2007,  79:  1041 
  • For recent reviews, see:
  • 3a Coudray L. Montchamp J.-L. Eur. J. Org. Chem.  2008,  3601 
  • 3b Tanaka M. Top. Curr. Chem.  2004,  232:  25 
  • 3c Baillie C. Xiao J. Curr. Org. Chem.  2003,  7:  477 
  • 3d Beletskaya IP. Kazankova MA. Russ. J. Org. Chem. (Engl. Transl.)  2002,  38:  1391 
  • For selected examples, see:
  • 4a Quntar AAA. Gallily R. Katzavian G. Srebnik M. Eur. J. Pharmacol.  2007,  556:  9 
  • 4b Doddridge ZA. Bertram RD. Hayes CJ. Soultanas P. Biochemistry  2003,  42:  3239 
  • 4c Jung K.-Y. Hohl RJ. Wiemer AJ. Wiemer DF. Bioorg. Med. Chem.  2000,  8:  2501 
  • 4d Cermak DM. Wiemer DF. Lewis K. Hohl RJ. Bioorg. Med. Chem.  2000,  8:  2729 
  • 4e Amori L. Costantino G. Marinozzi M. Pellicciari R. Gasparini F. Flor PJ. Kuhn R. Vranesic I. Bioorg. Med. Chem. Lett.  2000,  10:  1447 
  • 4f Vidil C. Morere A. Garcia M. Barragan V. Hamdaoui B. Rochefort H. Montero J.-L. Eur. J. Org. Chem.  1999,  447 
  • 4g Harnden MR. Parkin A. Parratt MJ. Perkins RM. J. Med. Chem.  1993,  36:  1343 
  • 4h Dragovich PS. Webber SE. Babine RE. Fuhrman SA. Patick AK. Matthews DA. Lee CA. Reich SH. Prins TJ. Marakovits JT. Littlefield ES. Zhou R. Tikhe J. Ford CE. Wallace MB. Meador JW. Ferre RA. Brown EL. Binford SL. Harr JEV. DeLisle DM. Worland ST. J. Med. Chem.  1998,  41:  2806 
  • 4i Lazrek HB. Khaïder H. Rochdi A. Barascut J.-L. Imbach J.-L. Tetrahedron Lett.  1996,  37:  4701 
  • 4j Lazrek HB. Rochdi A. Khaider H. Barascut J.-L. Imbach J.-L. Balzarini J. Witvrouw M. Pannecouque C. De Clercq E. Tetrahedron  1998,  54:  3807 
  • 4k Tian W. Zhu Z. Liao Q. Wu Y. Bioorg. Med. Chem. Lett.  1998,  8:  1949 
  • 4l Holstein SA. Cermak DM. Wiemer DF. Lewis K. Hohl RJ. Bioorg. Med. Chem.  1998,  6:  687 
  • For representative examples of the asymmetric synthesis of biologically active and related compounds, see:
  • 5a Wang D.-Y. Hu X.-P. Huang J.-D. Deng J. Yu S.-B. Duan Z.-C. Xu X.-F. Zheng Z. Angew. Chem. Int. Ed.  2007,  46:  7810 
  • 5b Hayashi T. Senda T. Takaya Y. Ogasawara M. J. Am. Chem. Soc.  1999,  121:  11591 
  • 5c Giordano C. Castaldi G. J. Org. Chem.  1989,  54:  1470 
  • 5d Thomas AA. Sharpless KB. J. Org. Chem.  1999,  64:  8379 
  • 5e Burk MJ. Stammers TA. Straub JA. Org. Lett.  1999,  1:  387 
  • 5f Sulzer-Moss S. Tissot M. Alexakis A. Org. Lett.  2007,  9:  3749 
  • 5g Yokomatsu T. Yoshida Y. Suemune K. Yamagishi T. Shibuya S. Tetrahedron: Asymmetry  1995,  6:  365 
  • 5h Cravotto G. Giovenzana GB. Pagliarin R. Palmisano G. Sisti M. Tetrahedron: Asymmetry  1998,  9:  745 
  • 5i Vieth S. Costisella B. Schneider M. Tetrahedron  1997,  53:  9623 
  • 5j Henry J.-C. Lavergne D. Ratovelomanana-Vidal V. Genet J.-P. Beletskaya IP. Dolgina TM. Tetrahedron Lett.  1998,  39:  3473 
  • For reviews, see:
  • 6a Minami T. Motoyoshiya J. Synthesis  1992,  333 
  • 6b Dembitsky VM. Quntar AAA. Haj-Yehiaa A. Srebnik M. Mini-Rev. Org. Chem.  2005,  2:  91 
  • 6c Failla S. Finocchiaro P. Consiglio GA. Heteroat. Chem.  2000,  11:  493 
  • 6d Maffei M. Curr. Org. Synth.  2004,  1:  355 
  • 6e Nagaoka Y. Yakugaku Zasshi  2001,  121:  771 
  • 7a Parvole J. Jannasch P. Macromolecules  2008,  41:  3893 
  • 7b Sato T. Hasegawa M. Seno M. Hirano T.
    J. Appl. Polym. Sci.  2008,  109:  3746 
  • 7c Schmider M. Müh E. Klee JE. Mülhaupt R. Macromolecules  2005,  38:  9548 
  • 7d Senhaji O. Robin JJ. Achchoubi M. Boutevin B. Macromol. Chem. Phys.  2004,  205:  1039 
  • 7e Ebdon JR. Price D. Hunt BJ. Joseph P. Gao FG. Milnes GJ. Cunliffe LK. Polym. Degrad. Stab.  2000,  69:  267 
  • 7f Jin S. Gonsalves KE. Macromolecules  1998,  31:  1010 
  • 7g Hertler WR. J. Polym. Sci., Part A: Polym. Chem.  1991,  29:  869 
  • 8 Han LB. Tanaka M. J. Am. Chem. Soc.  1996,  118:  1571 
  • 9a Zhao C.-Q. Han L.-B. Goto M. Tanaka M. Angew. Chem. Int. Ed.  2001,  40:  1929 
  • 9b Han LB. Zhang C. Yazawa H. Shimada S. J. Am. Chem. Soc.  2004,  126:  5080 
  • 9c Han LB. Hua R. Tanaka M. Angew. Chem. Int. Ed.  1998,  37:  94 
  • 10a Goulioukina NS. Dolgina TM. Beletskaya IP. Henry J.-C. Lavergne D. Ratovelomanana-Vidal V. Genet J.-P. Tetrahedron: Asymmetry  2001,  12:  319 
  • 10b Gulykina NS. Dolgina TM. Bondarenko GN. Beletskaya IP. Russ. J. Org. Chem. (Engl. Transl.)  2003,  39:  797 
  • 11 Han L.-B. Ono Y. Shimada S. J. Am. Chem. Soc.  2008,  130:  2752 
  • 13a Tayama O. Nakano A. Iwahama T. Sakaguchi S. Ishii Y. J. Org. Chem.  2004,  69:  5494 
  • 13b Beaufils F. Dénès F. Renaud P. Angew. Chem. Int. Ed.  2005,  44:  5273 
  • 14 Arbuzova SN. Gusarova NK. Trofimov BA. ARKIVOC  2006,  (v):  12 
  • 15 Allen A. Manke DR. Lin W. Tetrahedron Lett.  2000,  41:  151 
  • 16 Dobashi N. Fuse K. Hoshino T. Kanada J. Kashiwabara T. Kobata C. Nune SK. Tanaka M. Tetrahedron Lett.  2007,  48:  4669 
  • 19a Ananikov VP. Malyshev DA. Beletskaya IP. Aleksandrov GG. Eremenko IL. Adv. Synth. Catal.  2005,  347:  1993 
  • 19b Ananikov VP. Beletskaya IP. Russ. Chem. Bull. Int. Ed.  2008,  57:  754 
  • 20 Palladium-Catalyzed Hydrophosphorylation; General Procedure: Under argon, Pd2(dba)3 (31.1 mg, 3.0 × 10-5 mol) and Ph3P (31.5 mg, 1.2 × 10-4 mol) were placed into a septum-sealed tube equipped with a magnetic stir bar, followed by the addition of THF (0.5 mL) through the septum, and the mixture was stirred for 3 min. When the color of the solution became brown, the H-phosphonate (1.0 × 10 mol) and alkyne (1.0 × 10 mol) were added to the mixture through the septum. Then, TFA (11.4 mg, 1.0 × 10-4 mol) was added, and the tube was capped with a PTFE-sealed screw cap. The mixture was stirred at 50 ˚C (see Tables 4 and 5 for additional details relating to the ratio of the reagents or conditions). After completion of the reaction, the color of the solution remained brown or changed to light brown
  • 23 Harwood LM. Aldrichimica Acta  1985,  18:  25 
12

The use of this compound to reverse the regioselectivity of a palladium-catalyzed reaction between diphenylphosphane oxide and alkynes was first reported in 1998, see ref. 9c. Later, Han et al. indicated that ‘it does not affect other palladium- or rhodium-catalyzed phosphoryl-hydrogen bond additions’, see ref. 9b; however, this additive was necessary to control the direction of phosphoryl-hydrogen addition in the case of the nickel system. Tanaka et al. have questioned the potential application of this additive for practical implementation in a recent study, see ref. 16. An acceptable mechanistic picture describing the influence of this additive on the regioselectivity of the addition reaction is not available thus far.

17

The ‘activated’ nature of the cyclic H-phosphonate facilitated the preferred formation of double addition product 7 in the palladium-catalyzed reaction, rather than the formation of product 3, e.g. see ref. 11.

18

See Supporting Information for a detailed description.

21

Compound Isolation and Purification: After completion of the reaction, the products were purified by dry-column flash chromatography on silica gel, see ref. 23. Hexane-EtOAc (for 3a-c, 3e-i, 4a, and 10) and hexane-EtOAc-EtOH (for 3d) gradient elution was applied. After drying in a vacuum, the pure products were obtained. The products were isolated as colorless or light-yellow oils, and their isolated yields given in Tables  [4] and  [5] were calculated based on the initial amount of the corresponding H-phosphonate.

22

Complete characterization of all the isolated products with ¹H, ¹³C, and ³¹P NMR spectroscopy, mass spectrometry, and microanalysis is provided in Section 6 of the Supporting Information.