Synlett 2009(15): 2508-2512  
DOI: 10.1055/s-0029-1217733
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Efficient Synthesis of 5-Functionalised 2-Methoxypyridines and their Transformation to Bicyclic δ-Lactams, both Accessed Using Magnesium ‘Ate’ Complexes as Key Reagents

Jacek G. Sośnicki*
Institute of Chemistry and Environmental Protection, West Pomeranian University of Technology, Szczecin, Al. Piastów 42, 71065 Szczecin, Poland
Fax: +48(91)4494639; e-Mail: sosnicki@ps.pl;
Further Information

Publication History

Received 18 June 2009
Publication Date:
27 August 2009 (online)

Abstract

Simple and efficient synthesis of 5-functionalised ­2-methoxypyridines from 5-bromo-2-methoxypyridine using ­[n-Bu3Mg]Li performed in noncryogenic conditions is described. Application of 5-functionalised 2-methoxypyridines in the synthesis of 1-substituted 3,6,9,9a-tetrahydroquinolizin-4-ones and 3,5,8,8a-tetrahydro-1H-quinolin-2-ones via allylation of the corresponding 5-functionalised N-allyl(or benzyl)pyridin-2-ones using ­[allyln-Bu2Mg]Li followed by ring-closing metathesis is presented.

    References and Notes

  • 1 Yorimitsu H. Oshima K. The Chemistry of Organomagnesium Ate Complexes In The Chemistry of Organomagnesium Compounds   Rappoport Z. Marek I. Wiley; Chichester: 2008.  Chap. 15. p.681-716  
  • 2a Stefan MC. Javier AE. Osaka I. McCullough RD. Macromolecules  2009,  42:  30 
  • 2b Shinozuka T. Yamamoto Y. Hasegawa T. Saito K. Naito S. Tetrahedron Lett.  2008,  49:  1619 
  • 2c Gallou F. Haenggi R. Hirt H. Marterer W. Schaefer F. Seeger-Weibel M. Tetrahedron Lett.  2008,  49:  5024 
  • 2d Lau SYW. Hughes G. O’Shea PD. Davies IW. Org. Lett.  2007,  9:  2239 
  • 2e Fleming FF. Gudipati S. Anh Viet V. Mycka RJ. Knochel P. Org. Lett.  2007,  9:  4507 
  • 2f Dolman SJ. Gosselin F. O’Shea PD. Davies IW. Tetrahedron  2006,  62:  5092 
  • 2g Kii S. Akao A. Iida T. Mase T. Yasuda N. Tetrahedron Lett.  2006,  47:  1877 
  • 2h Buron F. Plé N. Turck A. Marsais F. Synlett  2006,  1586 
  • 2i Thomas GL. Böhner C. Ladlow M. Spring DR. Tetrahedron  2005,  61:  12153 
  • 2j Trost BM. Frederiksen MU. Papillon JP. Harrington PE. Shin S. Shireman BT. J. Am. Chem. Soc.  2005,  127:  3666 
  • 2k Xu J. Jain N. Sui Z. Tetrahedron Lett.  2004,  45:  6399 
  • 2l Therkelsen FD. Rottländer M. Thorup N. Pedersen EB. Org. Lett.  2004,  6:  1991 
  • 2m Tsuji T. Nakamura T. Yorimitsu H. Shinokubo H. Oshima K. Tetrahedron  2004,  60:  973 
  • 2n Ito S. Kubo T. Morita N. Matsui Y. Watanabe T. Ohta A. Fujimori K. Murafuji T. Sugihara Y. Tajiri A. Tetrahedron Lett.  2004,  45:  2891 
  • 2o Shinokubo H. Oshima K. Eur. J. Org.Chem.  2004,  2081 
  • 2p Dumouchel S. Mongin F. Trécourt F. Quéguiner G. Tetrahedron  2003,  59:  8629 
  • 2q Fukuhara K. Takayama Y. Sato F. J. Am. Chem. Soc.  2003,  125:  6884 
  • 2r Dumouchel S. Mongin F. Trécourt F. Quéguiner G. Tetrahedron Lett.  2003,  44:  3877 
  • 2s Dumouchel S. Mongin F. Trécourt F. Quéguiner G. Tetrahedron Lett.  2003,  44:  2033 
  • 2t Inoue A. Kondo J. Shinokubo H. Oshima K. Chem. Eur. J.  2002,  8:  1730 
  • 2u Mase T. Houpis IN. Akao A. Dorziotis I. Emerson K. Hoang T. Iida T. Itoh T. Kamei K. Kato S. Kato Y. Kawasaki M. Lang F. Lee J. Lynch J. Maligres P. Molina A. Nemoto T. Okada S. Reamer R. Song JZ. Tschaen D. Wada T. Zewge D. Volante RP. Reider PJ. Tomimoto K. J. Org. Chem.  2001,  66:  6775 
  • 2v Kondo J. Inoue A. Shinokubo H. Oshima K. Angew. Chem. Int. Ed.  2001,  40:  2085 
  • 2w Inoue A. Kitagawa K. Shinokubo H. Oshima K. J. Org. Chem.  2001,  66:  4333 
  • 2x Iida T. Wada T. Tomimoto K. Mase T. Tetrahedron Lett.  2001,  42:  4841 
  • 2y Kitagawa K. Inoue A. Shinokubo H. Oshima K. Angew. Chem. Int. Ed.  2000,  39:  2481 
  • 3a Sośnicki JG. Struk Ł. Synlett  2009,  1812 
  • 3b Bentabed-Ababsa G. Blanco F. Derdour A. Mongin F. Trécourt F. Quéguiner G. Ballesterous R. Abarca B. J. Org. Chem.  2009,  74:  163 
  • 3c Hawad H. Bayh O. Hoarau C. Trécourt F. Quéguiner G. Marsais F. Tetrahedron  2008,  64:  3236 
  • 3d Mulvey RE. Mongin F. Uchiyama M. Kondo Y. Angew. Chem. Int. Ed.  2007,  46:  3802 
  • 3e Bayh O. Awad H. Mongin F. Hoarau C. Bischoff L. Trécourt F. Quéguiner G. Marsais F. Blanco F. Abarca B. Ballesteros R. J. Org. Chem.  2005,  70:  5190 
  • 3f Mongin F. Bucher A. Bazureau JP. Bayh O. Awad H. Trécourt F. Tetrahedron Lett.  2005,  46:  7989 
  • 3g Awad H. Mongin F. Trécourt F. Quéguiner G. Marsais F. Blanco F. Abarca B. Ballesteros R. Tetrahedron  2005,  61:  4779 
  • 3h Awad H. Mongin F. Trécourt F. Quéguiner G. Marsais F. Tetrahedron Lett.  2004,  45:  7873 
  • 3i Awad H. Mongin F. Trécourt F. Quéguiner G. Marsais F. Blanco F. Abarca B. Ballesteros R. Tetrahedron Lett.  2004,  45:  6697 
  • 3j Ide M. Nakata M. Bull. Chem. Soc. Jpn.  1999,  72:  2491 
  • 3k Ide M. Yasuda M. Nakata M. Synlett  1998,  936 
  • 3l Yasuda M. Ide M. Matsumoto Y. Nakata M. Bull. Chem. Soc. Jpn.  1998,  71:  1417 
  • 4a Hatano M. Miyamoto T. Ishihara K. Curr. Org. Chem.  2007,  11:  127 
  • 4b Hatano M. Matsumura T. Ishihara K. Org. Lett.  2005,  7:  573 
  • 4c Faraks J. Richey HG. Organometallics  1990,  9:  1778 
  • 4d Richery HG. DeStephano J. Tetrahedron Lett.  1985,  26:  275 
  • 4e Ashby EC. Chao L.-C. Laemmle J.
    J. Org. Chem.  1974,  39:  3258 
  • 4f Wittig G. Meyer FJ. Lange G. Justus Liebigs Ann. Chem.  1951,  571:  167 
  • 5 See, for example: Rubiralta M. Giralt E. Diez A. Piperidines. Structure, Preparation, Reactivity and Synthetic Application of Piperidines and its Derivatives   Elsevier; Amsterdam: 1991. 
  • 6a Sośnicki JG. Synlett  2003,  1673 
  • 6b Sośnicki JG. Westerlich S. Tetrahedron Lett.  2002,  43:  1325 
  • 7a Sośnicki JG. Tetrahedron  2009,  65:  1336 
  • 7b Sośnicki JG. Tetrahedron Lett.  2009,  50:  178 
  • 7c Sośnicki JG. Tetrahedron  2007,  63:  11862 
  • 8a Sośnicki JG. Tetrahedron Lett.  2005,  46:  4295 
  • 8b Sośnicki JG. Tetrahedron Lett.  2006,  47:  6809 
  • 9a Bowman WR. Bridge CF. Synth. Commun.  1999,  29:  4051 
  • 9b Kunishima M. Friedman JE. Rokita SE. J. Am. Chem. Soc.  1999,  121:  4722 
  • 9c Shiao M.-J. Lai L.-L. Ku W.-S. Lin P.-Y. Hwu JR. J. Org. Chem.  1998,  58:  4742 
  • 9d Hwu JR. Wong FF. Huang J.-J. Tsay S.-C. J. Org. Chem.  1997,  62:  4097 
  • 9e Hongo H. Nakano H. Okuyama Y. Heterocycles  1995,  40:  831 
  • 9f Newkome GR. Kohli DK. Kawato T. J. Org. Chem.  1980,  45:  4508 
  • 1-Substituted quinolizidin-4-ones are biologically active species. See, for example:
  • 10a Casagrande M. Basilico N. Parapini S. Romeo S. Taramelli D. Sparatore A. Bioorg. Med. Chem.  2008,  16:  6813 
  • 10b Vazanna I. Budriesi R. Terranowa E. Ioan P. Ugenti MP. Tasso B. Chiarini A. Sparatore F. J. Med. Chem.  2007,  50:  334 
  • 10c Kim D.-I. Deutsch HM. Ye X. Schwerei MM. J. Med. Chem.  2007,  50:  2718 
  • 11a Mahiout Z. Lomberget T. Goncalves S. Barret R. Org. Biomol. Chem.  2008,  6:  1364 
  • 11b Boros EE. Burova SA. Erickson GA. Johns BA. Koble CS. Kurose N. Sharp MJ. Tabet EA. Thompson JB. Toczko MA. Org. Process Res. Dev.  2007,  11:  899 
  • 11c Denton TT. Zhang X. Cashman JR. J. Med. Chem.  2005,  48:  224 
  • 11d Manoso AS. Ahn C. Soheili A. Handy CJ. Correia R. Seganish WM. DeShong P. J. Org. Chem.  2004,  69:  8305 
  • 11e Hodgson DM. Maxwell CR. Wisedale R. Matthews IR. Carpenter KJ. Dickenson AH. Wonnacott S. J. Chem. Soc., Perkin Trans. 1  2001,  3150 
  • 11f Giblin GMP. Jones CD. Synlett  1997,  589 
  • See, for example:
  • 12a Humphries PS. Do TQ.-Q. Wilhite DM. Tetrahedron Lett.  2009,  50:  1765 
  • 12b Wroblewski B. Wigglesworth MJ. Szekeres PG. Smith GD. Rahman SS. Nicholson NH. Muir AI. Hall A. Heer JP. Gerland SL. Coates WJ. J. Med. Chem.  2009,  52:  818 
  • 12c Brown A. Brown L. Brown B. Calabrese A. Ellis D. Puhalo N. Smith CR. Wallace O. Watson L. Bioorg. Med. Chem. Lett.  2008,  18:  5242 
  • 12d Ebdrup S. Hoffmann H. Refsgaard F. Fledelius C. Jacobsen P. J. Med. Chem.  2007,  50:  5449 
  • 12e Qu W. Kung M.-P. Hou C. Benedum TE. Kung HF. J. Med. Chem.  2007,  50:  2157 
13

Typical Procedure of 5-Functionalisation of 2-Methoxy-pyridine
To a cooled (0 ˚C) and stirred solution of n-BuMgCl (4.2 mmol, 2.1 mL, 2.0 M in THF) in dry THF (4 mL) in a Schlenk flask, n-BuLi (8.4 mmol, 3.4 mL, 2.5 M in hexane) was added via syringe over 1 min under argon, and the mixture was stirred for 5 min. To a yellow, cooled (-2 to 0 ˚C) solution 5-bromo-2-methoxypyridine (8.4 mmol, 1.09 mL) was added via syringe. The resulting solution was stirred for 30 min at -2 to 0 ˚C, then the electrophile was added (Table  [¹] ), and the mixture was continuously stirred for 30 min at 0 ˚C and 1 h at r.t. After addition of aq sat. NH4Cl (5 mL), the aqueous layer was extracted with EtOAc (2 × 75 mL), and the combined organic layers were dried over MgSO4. Filtration, concentration in vacuo, and purification by distillation or flash column chromatography yielded compound 3.

14

Typical Procedure of Transformation of 3 to Bicyclic Lactams 7
The mixture of 3 (5.5 mmol), NaI (11 mmol), and allyl bromide (38.5 mmol) was heated in MeCN (30 mL) at 55 ˚C for 1-6 d (see Table  [²] ). Subsequently, the solvent was evaporated and brine containing 1% Na2S2O3 was added. The aqueous solution was extracted with EtOAc (2 × 75 mL), and the combined organic layers were dried over MgSO4. Filtration, concentration in vacuo, and purification by flash column chromatography yielded 4. To a cooled (0 ˚C) and stirred solution of allylMgCl (4.9 mmol, 2.45 mL, 2.0 M in THF) in dry THF (4 mL) in a Schlenk flask n-BuLi (9.8 mmol, 3.9 mL, 2.5 M in hexane) was added via syringe under argon, the mixture was stirred for 5 min and then cooled to -72 ˚C. The mixture containing 1b was next transferred via syringe to a cooled (-72 ˚C) solution of N-allylpyridin-2-one (4, 9.0 mmol) in THF (20 mL). The resulting solution was stirred for 20 min at -72 ˚C, and then aq sat. NH4Cl (10 mL) was added. The aqueous layer was extracted with EtOAc (2 × 75 mL), and the combined organic layers were dried over MgSO4. Filtration, concentration in vacuo, and separation by flash column chromatography yielded 5. To a solution of 1,6-diallyl lactam 5 (1.0 mmol) in dry, degassed toluene (10 mL), ruthenium catalyst 8 or 9 was added, and the reaction mixture was stirred under slowly bubbled stream of argon at 70 ˚C. After the reaction was complete (Table  [²] ), the solvent was evaporated at reduced pressure, and the residue was left standing for 48 h followed by purification on column chromatography.

15

Selected Spectroscopic Data
2-Methoxy-5-trimethylsilanylpyridine (3b) Colorless oil. IR (film): 2956, 1586, 1556, 1488, 1352, 1286, 1250, 1116, 1026, 840 cm. MS (EI, 70 eV): m/z (%) = 181 (32) [M+], 180 (17), 166 (100), 136 (7). ¹H NMR (400.1 MHz, CDCl3): δ = 0.26 (9 H, s, Me3Si), 3.94 (3 H, s, OCH3), 6.74 (1 H, dd, J = 8.3, 0.8 Hz, =CH-3), 7.65 (1 H, dd, J = 8.3, 1.9 Hz, =CH-4), 8.24 (1 H, dd, J = 1.8, 0.8 Hz, =CH-6). ¹³C NMR (100.6 MHz, CDCl3): δ = -1.1 (Me3Si), 53.3 (OCH3), 110.6 (CH-3), 126.3 (C-5), 143.5 (CH-4), 151.6 (CH-6), 164.8 (C-2). HRMS (EI): m/z calcd for C9H15NOSi: 181.0923; found: 181.0922.
1-Trimethylsilanyl-3,6,9,9a-tetrahydroquinolizin-4-one (7b) Colorless oil. IR (film): 3036, 2960, 1666, 1644, 1468, 1444, 1404, 1296, 1254, 1116, 840, 760 cm. MS (EI, 70 eV): m/z (%) = 221 (79) [M+], 220 (100), 206 (12), 152 (14), 148 (23), 124 (23), 100 (34), 73 (28). ¹H NMR (400.1 MHz, CDCl3): δ = 0.15 (9 H, s, Me3Si), 2.00-2.10 (1 H, m, CHH-9), 2.34 (1 H, dm, J = ca. 17.1 Hz, CHH-9), 2.97-3.01 (2 H, m, CH2-3), 3.42 (1 H, dm, J = ca. 18.3 Hz, CHH-6), 4.16 (1 H, dq, J = 11.5, 3.4 Hz, CH-9a), 5.06 (1 H, dm, J = 18.3 Hz, CHH-6), 5.69-5.76 (1 H, m, =CH-7), 5.76-5.83 (1 H, m, =CH-8), 6.02 (1 H, ddd, J = 4.2, 3.2, 1.0 Hz, =CH-2). ¹³C NMR (100.6 MHz, CDCl3): δ = -1.1 (Me3Si), 32.9 (CH2-3), 34.1 (CH2-9), 41.7 (CH2-6), 57.6 (CH-9a), 124.8 (=CH-8), 125.0 (=CH-7), 131.1 (=CH-2), 137.21 (C-1), 166.1 (C-4). HRMS (EI): m/z calcd for C12H19NOSi: 221.1236; found: 221.1234.