Synlett 2009(15): 2534-2538  
DOI: 10.1055/s-0029-1217730
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Efficient Suzuki Coupling of Aryl Chlorides in a Continuous Flow ­Capillary Microreactor

Jie Jin, Min-Min Cai, Jian-Xin Li*
Key Lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. of China
Fax: +86(25)83686419; e-Mail: lijxnju@nju.edu.cn;
Further Information

Publication History

Received 6 May 2009
Publication Date:
27 August 2009 (online)

Abstract

The Suzuki reactions of aryl chlorides containing both electron-donating and electron-withdrawing groups with aryl boronic acid, catalyzed by a simple non-phosphine ligand catalyst system, Pd(OAc)2/DABCO, were performed in a continuous capillary microreactor at 50 ˚C. In the microreactor, the coupling product was obtained mostly in near quantitative yield within a four hour residence time. In contrast, the conversions were only 12-69% in batch reactions.

    References and Notes

  • 1a Chighine A. Sechi G. Bradley M. Drug Discovery Today  2007,  12:  459 
  • 1b Kirschning A. Solodenko W. Mennecke K. Chem. Eur. J.  2006,  12:  5972 
  • 1c Yoshida J. Nagaki A. Iwasaki T. Suga S. Chem. Eng. Technol.  2005,  28:  259 
  • 2a Deng Z. Chuaqui C. Singh J. J. Med. Chem.  2006,  49:  490 
  • 2b Houghten RA. Yu Y. J. Am. Chem. Soc.  2005,  127:  8582 
  • 2c Parlow JJ. Curr. Opin. Drug Discovery Dev.  2005,  8:  757 
  • 3a Huryn DM. Cosford NDP. Annu. Rep. Med. Chem.  2007,  42:  401 
  • 3b George ED. Farid SS. Ind. Eng. Chem. Res.  2008,  47:  8762 
  • 3c Takagi T. Ramachandran C. Bermejo M. Yamashita S. Yu LX. Amidon GL. Mol. Pharm.  2006,  3:  631 
  • 4a Watts P. Haswell SJ. Chem. Soc. Rev.  2005,  34:  235 
  • 4b Wiles C. Watts P. Haswell SJ. Pombo-Villar E. Lab Chip  2001,  1:  100 
  • 4c Kawaguchi T. Miyata H. Ataka K. Mae K. Yoshida J. Angew. Chem. Int. Ed.  2005,  44:  2413 
  • 4d Lainchbury MD. Medley MI. Taylor PM. Hirst P. Dohle W. Booker-Milburn KI. J. Org. Chem.  2008,  73:  6497 
  • 5 Grant D. Dahl R. Cosford NDP. J. Org. Chem.  2008,  73:  7219 
  • 6a Jamwal N. Gupta M. Paul S. Green Chem.  2008,  10:  999 
  • 6b Liu L. Zhang Y. Xin B. J. Org. Chem.  2006,  71:  3994 
  • 6c Leadbeater NE. Smith RJ. Org. Lett.  2006,  8:  4589 
  • 6d Zhou JR. Fu GC. J. Am. Chem. Soc.  2004,  126:  1340 
  • 6e Molander GA. Gormisky PE. J. Org. Chem.  2008,  73:  7481 
  • 7a Miyaura N. Suzuki A. Chem. Rev.  1995,  95:  2457 
  • 7b Kotha S. Lahiri K. Kashinath D. Tetrahedron  2002,  58:  9633 
  • 8a Barder TE. Buchwald SL. Org. Lett.  2004,  6:  2649 
  • 8b Colacot TJ. Shea HA. Org. Lett.  2004,  6:  3731 
  • 8c Walker SD. Barder TE. Martinelli JR. Buchwald SL. Angew. Chem. Int. Ed.  2004,  43:  1871 
  • 8d Barder TE. Walker SD. Martinelli JR. Buchwald SL. J. Am. Chem. Soc.  2005,  127:  4685 
  • 8e Zapf A. Jackstell R. Rataboul F. Reirmeier T. Monsees A. Fuhrmann C. Shaikh N. Dingerdissen U. Beller M. Chem. Commun.  2004,  38 
  • 8f Zapf A. Beller M. Chem. Commun.  2005,  431 
  • 8g Kwong FY. Lam WH. Yeung CH. Chan KS. Chan ASC. Chem. Commun.  2004,  1922 
  • 8h So CM. Lau CP. Kwong FY. Org. Lett.  2007,  9:  2795 
  • 8i So CM. Lau CP. Kwong FY. Angew. Chem. Int. Ed.  2008,  47:  8059 
  • 8j Yin J. Rainka MP. Zhang XX. Buchwald SL. J. Am. Chem. Soc.  2002,  124:  1162 
  • 9a Comer E. Organ MG. J. Am. Chem. Soc.  2005,  127:  8160 
  • 9b Liu LF. Zhang YH. Wang YG. J. Org. Chem.  2005,  70:  6122 
  • 10 Basheer C. Hussain FSJ. Lee HK. Valiyaveettil S. Tetrahedron Lett.  2004,  45:  7297 
  • 11 Li JH. Hu XC. Yun L. Xie YX. Tetrahedron  2006,  62:  31 
  • 12a Gong JF. Zhang YH. Song MP. Xu C. Organometallics  2007,  26:  6487 
  • 12b Reine S. Katarzyna G. Eric F. Veronique D. Adv. Synth. Catal.  2007,  349:  373 
  • 13a Ming SC. Po LC. Yee KF. Org. Lett.  2007,  9:  2795 
  • 13b Kantam ML. Roy M. Roy S. Sreedhar B. Madhavendra SS. Choudary BM. Dec RL. Tetrahedron  2007,  63:  8002 
  • 14a Stanetty P. Schnurch M. Mihovilovic MD. J. Org. Chem.  2006,  71:  3754 
  • 14b Kwon MS. Kim S. Park S. Bosco W. Chidrala RK. Park J. J. Org. Chem.  2009,  74:  2877 
  • 14c Huang H. Liu H. Jiang H. Chen K. J. Org. Chem.  2008,  73:  6037 
  • 14d Wan Y. Wang H. Zhao Q. Klingstedt M. Terasaki O. Zhao D. J. Am. Chem. Soc.  2009,  131:  4541 
  • 14e Wang DH. Mei TS. Yu JQ. J. Am. Chem. Soc.  2008,  130:  17676 
  • 15a Li JH. Zhu QM. Xie YX. Tetrahedron  2006,  62:  10888 
  • 15b Li JH. Liu WJ. Xie YX. J. Org. Chem.  2005,  70:  5409 
  • 16 Leadbeater NE. Marco M. Org. Lett.  2002,  4:  2973 
  • 17a Fukuyama T. Shinmen M. Nishitani S. Sato M. Ryu I. Org. Lett.  2002,  4:  1691 
  • 17b Yoon SK. Choban ER. Kane C. Tzedakis T. Kenis PJA. J. Am. Chem. Soc.  2005,  127:  10466 
  • 17c Wiles C. Watts P. Haswell SJ. Villar EP. Org. Proc. Res. Dev.  2004,  8:  28 
  • 17d Tanaka K. Motomatsu S. Koyama K. Tanaka S. Fukase K. Org. Lett.  2007,  9:  299 
  • 17e Baxendale IR. Jones CMG. Ley SV. Tranmer GK. Chem. Eur. J.  2006,  12:  4407 
  • 17f Worz O. Jackel KP. Richter T. Wolf A. Chem. Eng. Technol.  2001,  24:  138 
  • 17g Schubert K. Brandner J. Fichtner M. Linder G. Schygulla U. Wenka A. Microscale Thermophys. Eng.  2001,  5:  17 
  • 20 Tanaka K. Motomatsu S. Koyama K. Tanaka S. Fukase K. Org. Lett.  2007,  9:  299 
18

Microreactor Reaction; Typical Procedure. A stock solution of the aryl chloride (0.1 mmol), Pd(OAc)2 (3 mol%), DABCO (6 mol%) and TBAB (0.1 equiv), in DMF (1 mL) was prepared and taken up in a SGE gas-tight syringe. A second stock solution containing K3PO4˙3H2O (3 equiv), and phenylboronic acid (1.5 equiv) in H2O (1 mL), containing DMF (50 µL) as an added to dissolve phenylboronic acid, was also prepared and taken up in a second SGE gas-tight syringe. The syringes were placed on a TS2-60 syringe pump that was set to deliver 0.9 µL/min and the oil bath was set at 50 ˚C. The output from the reactor was quenched with Et2O immediately. The resulting mixture was extracted with Et2O (3 × 5 mL) and the combined organic phase was washed with brine, and dried with anhydrous Na2SO4, then concentrated and the desired product was submitted for NMR analysis. In optimization experiments, the ¹H NMR spectrum of the product mixture was recorded and the product conversion was determined by integration of the peaks arising from CH3 or OCH3 groups of both the aryl chloride and the product. The conversion was calculated using the formula: [Int.(prod)/Int.(prod + aryl chloride)] × 100.

19

Batch Reaction; Typical Procedure. A mixture of aryl chloride (0.5 mmol), phenylboronic acid (1.5 equiv), Pd(OAc)2 (3 mol%), DABCO (6 mol%), TBAB (0.1 equiv), K3PO4˙3H2O (3 equiv), H2O (5 mL) and DMF (5 mL), was added to a 25 mL round-bottomed flask, and stirred at 50 ˚C or 80 ˚C for either 4 h or 24 h. After the reaction, the solution was cooled to room temperature and extracted with Et2O (3 × 15 mL). The combined organic phase was washed with brine, and dried with anhydrous Na2SO4, then concentrated and the product was analyzed by ¹H NMR in order to judge the conversion of aryl chloride. All of the final compounds in this study were isolated by silica gel chromatography (petroleum ether) for the purpose of spectroscopic identification.