Subscribe to RSS
DOI: 10.1055/s-0029-1217712
Asymmetric Synthesis of γ-Hydroxy-α,β-acetylenic Esters Catalyzed by Oxazolidine-Titanium Complex
Publication History
Publication Date:
03 August 2009 (online)

Abstract
An efficient catalytic system has been developed for the enantioselective reaction of alkynoates with aromatic aldehydes for the synthesis of optically active γ-hydroxy-α,β-acetylenic esters (with up to 81% isolated yield and up to 84% enantioselectivity).
Key words
asymmetric synthesis - oxazolidine - aldehyde - addition - asymmetric alkynylation
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- 1a
Modern Acetylene Chemistry
Stang PJ.Diederich F. VCH; Weinheim: 1995.Reference Ris Wihthout Link - 1b
Marshall JA.Wang XJ. J. Org. Chem. 1992, 57: 1242Reference Ris Wihthout Link - 1c
Fox ME.Li C.Marino JP.Overman LE. J. Am. Chem. Soc. 1999, 121: 5467Reference Ris Wihthout Link - 1d
Myers AG.Zheng B. J. Am. Chem. Soc. 1996, 118: 4492Reference Ris Wihthout Link - 1e
Trost BM.Krische MJ. J. Am. Chem. Soc. 1999, 121: 6131Reference Ris Wihthout Link - 1f
Roush WR.Sciotti RJ. J. Am. Chem. Soc. 1994, 116: 6457Reference Ris Wihthout Link - 1g
Lu G.Li YM.Li XS.Chan ASC. Coord. Chem. Rev. 2005, 249: 1736Reference Ris Wihthout Link - 1h
Cozzi PG.Hilgraf R.Zimmermann N. Eur. J. Org. Chem. 2004, 4095Reference Ris Wihthout Link - 1i
Pu L. Tetrahedron 2003, 59: 98735Reference Ris Wihthout Link - 1j
Pu L.Yu HB. Chem. Rev. 2001, 101: 757Reference Ris Wihthout Link - Selective examples:
- 2a
Corey EJ.Cimprich KA. J. Am. Chem. Soc. 1994, 116: 3151Reference Ris Wihthout Link - 2b
Xu MH.Pu L. Org. Lett. 2002, 4: 4555Reference Ris Wihthout Link - 2c
Xu Z.Wang R.Xu J.Yan W.Chen C. Angew. Chem. Int. Ed. 2003, 42: 5747Reference Ris Wihthout Link - 2d
Dahmen S. Org. Lett. 2004, 6: 2113Reference Ris Wihthout Link - 2e
Xu Z.Chen C.Xu J.Miao M.Yan W.Wang R. Org. Lett. 2004, 6: 1193Reference Ris Wihthout Link - 2f
Li Z.Pu L. Org. Lett. 2004, 6: 1065Reference Ris Wihthout Link - 2g
Emmerson DPG.Hems WP.Davis BG. Org. Lett. 2006, 8: 207Reference Ris Wihthout Link - 2h
Trost BM.Weiss AH.Wangelin AJ. J. Am. Chem. Soc. 2006, 128: 8Reference Ris Wihthout Link - 2i
Xu Z.Lin L.Xu J.Yan W.Wang R. Adv. Synth. Catal. 2006, 348: 506Reference Ris Wihthout Link - 2j
Li Z.Liu T.Pu L. J. Org. Chem. 2007, 72: 4340Reference Ris Wihthout Link - 2k
Koyuncu H.Dogan Ö. Org. Lett. 2007, 9: 3477Reference Ris Wihthout Link - 2l
Liebehentschel S.Cvengroš J.Wangelin AJ. Synlett 2007, 2574Reference Ris Wihthout Link - 2m
Asano Y.Hara K.Ito H.Sawamura M. Org. Lett. 2007, 9: 3901Reference Ris Wihthout Link - 2n
Jiang B.Chen Z.-L.Xiong W.-N. Chem. Commun. 2002, 1524Reference Ris Wihthout Link - 2o
Cozzi PG. Angew. Chem. Int. Ed. 2003, 42: 2895Reference Ris Wihthout Link - 2p
Cozzi PG.Rudolph J.Bolm C.Norrby P.-O.Tomasini C. J. Org. Chem. 2005, 70: 5733Reference Ris Wihthout Link - 3a
Fassler DE.Carreira EM. J. Am. Chem. Soc. 2000, 122: 1806Reference Ris Wihthout Link - 3b
Anand NK.Carreira EM. J. Am. Chem. Soc. 2001, 123: 9687Reference Ris Wihthout Link - 4a
Moore D.Pu L. Org. Lett. 2002, 4: 1855Reference Ris Wihthout Link - 4b
Gao G.Moore D.Xie RG.Pu L. Org. Lett. 2002, 4: 4143Reference Ris Wihthout Link - 4c
Boyall D.Frantz DE.Carreira EM. Org. Lett. 2002, 4: 2605Reference Ris Wihthout Link - 4d
Liu QZ.Xie NS.Luo ZB.Cui X.Cun LF.Gong LZ.Mi AQ.Jiang YZ. J. Org. Chem. 2003, 68: 7921Reference Ris Wihthout Link - 4e
Gao G.Xie RG.Pu L. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5417Reference Ris Wihthout Link - 5a
Lu G.Li X.Chan WL.Chan ASC. Chem. Commun. 2002, 172Reference Ris Wihthout Link - 5b
Li X.Lu G.Kwok WH.Chan ASC. J. Am. Chem. Soc. 2002, 124: 12636Reference Ris Wihthout Link - 5c
Lu G.Li X.-S.Jia X.Chan WL.Chan ASC. Angew. Chem. Int. Ed. 2003, 42: 5057Reference Ris Wihthout Link - 6
Takita R.Yakura K.Ohshima T.Shibasaki M. J. Am. Chem. Soc. 2005, 127: 13760 - 7
Asano Y.Hara K.Ito H.Sawamura M. Org. Lett. 2007, 9: 3901 - 8a The
original report, see:
Midland MM.Tramontano A.Cable JR. J. Org. Chem. 1980, 45: 28Reference Ris Wihthout Link - 8b Another recent report about
the addition of AgCºCCO2Me to aldehydes, see:
Shahi SP.Koide K. Angew. Chem. Int. Ed. 2004, 43: 2525Reference Ris Wihthout Link - 9
Trost BM.Weiss AH.von Wangelin AJ. J. Am. Chem. Soc. 2006, 128: 8 - 10a
Gao G.Wang Q.Yu X.-Q.Xie R.-G.Pu L. Angew. Chem. Int. Ed. 2006, 45: 122Reference Ris Wihthout Link - 10b
Rajaram AR.Pu L. Org. Lett. 2006, 8: 2019Reference Ris Wihthout Link - 11
Yang F.Xi P.Yang L.Lan J.Xie R.You J. J. Org. Chem. 2007, 72: 5457 - 12
Lin L.Jiang X.Liu W.Xu Z.Chan ASC.Wang R. Org. Lett. 2007, 9: 2329 - 13
Xu Z.Mao J.Zhang Y. Org. Biomol. Chem. 2008, 6: 1288 - Related papers about the important MPEG effect, see:
- 14a
Rudolph J.Hermanns N.Bolm C. J. Org. Chem. 2004, 69: 3997Reference Ris Wihthout Link - 14b
Bolm C.Rudolph J. J. Am. Chem. Soc. 2002, 124: 14850Reference Ris Wihthout Link - 14c
Mao J.Zhang Z.Wan B.Wu F.Lu S. Catal. Commun. 2006, 7: 550Reference Ris Wihthout Link - 14d
Mao J.Wan B.Wu F.Wang R.Lu S. J. Mol. Catal. A: Chem. 2005, 232: 9Reference Ris Wihthout Link
References and Notes
General Procedure
for the Addition of Methyl Propiolate to Benzaldehyde
All
manipulations were carried out under an argon atmosphere. The ligand 2 (0.1 mmol), base (0.5 mmol), and DIMPEG
(0.05 mmol) were mixed in dry toluene (2.0 mL) at r.t. Then, a solution
of Me2Zn (1.2 M in toluene, 1.5 mmol) and methyl propiolate
(1.5 mmol) were added in turn. After the mixture was stirred at
r.t. for 7 h, Ti(Oi-Pr)4 (0.2 mmol,
60 µL) was added and the stirring continued for another
0.5 h. The yellow solution was cooled to 0 ˚C and treated
with benzaldehyde (0.5 mmol, 50 µL), then the resultant
mixture was allowed to warm up to r.t. naturally and stirred for
20 h. After the reaction was completed, it was cooled to 0 ˚C
again and quenched by 5% aq HCl (2 mL). The mixture was
extracted with EtOAc (2 × 10 mL). The organic
layer was dried over Na2SO4 and concentrated
under vacuum. The residue was purified by flash column chromatography
(silica gel H, 10% EtOAc in PE) to give the pure product.
Methyl 4-Hydroxy-4-phenylbut-2-ynoate
Yield
78%; 84% ee determined by HPLC analysis (Chiralcel OD-H
column, IPA-hexane = 20:80). t
R(minor) = 6.60
min, t
R(major) = 7.33
min. ¹H NMR (400 MHz, CDCl3): δ = 2.67 (d, J = 6.4 Hz,
1 H), 3.80 (s, 3 H), 5.58 (d, J = 6.4
Hz, 1 H), 7.35-7.43 (m, 3 H), 7.52 (d, J = 6.8
Hz, 2 H). ¹³C NMR (100 MHz, CDCl3): δ = 53.4,
64.4, 77.8, 87.4, 127.1, 29.22, 129.3, 138.9, 154.4.