References and Notes
<A NAME="RU04709ST-1">1</A>
Hoffmann-Röder A.
Krause N.
Angew. Chem. Int. Ed.
2004,
43:
1196
For selected recent books and reviews
for allene chemistry, see:
<A NAME="RU04709ST-2A">2a</A>
Krause N.
Hashmi ASK. In Modern Allene Chemistry
Vol.
1:
Wiley-VCH;
Weinheim:
2004.
<A NAME="RU04709ST-2B">2b</A>
Krause N.
Hashmi ASK. In Modern Allene Chemistry
Vol.
2:
Wiley-VCH;
Weinheim:
2004.
<A NAME="RU04709ST-2C">2c</A>
Kwong CK.-W.
Fu MY.
Lam CS.-L.
Toy PH.
Synthesis
2008,
2307
<A NAME="RU04709ST-2D">2d</A>
Ma S.
Chem.
Rev.
2005,
105:
2829
<A NAME="RU04709ST-2E">2e</A>
Miesch M.
Synthesis
2004,
746
<A NAME="RU04709ST-2F">2f</A>
Krause N.
Hoffmann-Röder A.
Tetrahedron
2004,
60:
11671
<A NAME="RU04709ST-2G">2g</A>
Lu X.
Zhang C.
Xu Z.
Acc.
Chem. Res.
2001,
34:
535
<A NAME="RU04709ST-3">3</A>
Sakai N.
Hirasawa M.
Konakahara T.
Tetrahedron
Lett.
2005,
46:
6407
<A NAME="RU04709ST-4A">4a</A>
Das B.
Damodar K.
Bhunia N.
Shashikanth B.
Tetrahedron
Lett.
2009,
50:
2072
<A NAME="RU04709ST-4B">4b</A>
Das B.
Kanth BS.
Reddy KR.
Satyalakshmi G.
Kumar RA.
Chem.
Lett.
2008,
37:
512
<A NAME="RU04709ST-5">5</A>
Appel R.
Angew.
Chem., Int. Ed. Engl.
1975,
14:
801
<A NAME="RU04709ST-6A">6a</A>
Alexakis A.
Marek I.
Mangeney P.
Normant JF.
J.
Am. Chem. Soc.
1990,
112:
8042
<A NAME="RU04709ST-6B">6b</A>
Marek I.
Mangeney P.
Alexakis A.
Normant JF.
Tetrahedron Lett.
1986,
27:
5499
<A NAME="RU04709ST-6C">6c</A>
Rona P.
Crabbe P.
J. Am. Chem. Soc.
1969,
91:
3289
<A NAME="RU04709ST-6D">6d</A>
Rona P.
Crabbe P.
J. Am. Chem. Soc.
1968,
90:
4733
<A NAME="RU04709ST-7A">7a</A>
Keinan E.
Bosch E.
J.
Org. Chem.
1986,
51:
4006
<A NAME="RU04709ST-7B">7b</A>
Elsevier CJ.
Stehouwer PM.
Westmijze H.
Vermeer P.
J. Org.
Chem.
1983,
48:
1103
<A NAME="RU04709ST-8A">8a</A>
Moreau J.-L.
Gaudemar M.
J.
Organomet. Chem.
1976,
108:
159
<A NAME="RU04709ST-8B">8b</A>
Alexakis A.
Commercon A.
Villiéras J.
Normant JF.
Tetrahedron Lett.
1976,
2313
<A NAME="RU04709ST-9">9</A>
Wenkert E.
Leftin MH.
Michelotti EL.
J. Org. Chem.
1985,
50:
1122
<A NAME="RU04709ST-10A">10a</A>
Riveiros R.
Rodriguez D.
Perez Sestelo J.
Sarandeses LA.
Org. Lett.
2006,
8:
1403
<A NAME="RU04709ST-10B">10b</A>
Yoshida M.
Gotou T.
Ihara M.
Tetrahedron
Lett.
2004,
45:
5573
<A NAME="RU04709ST-10C">10c</A>
Lee K.
Seomoon D.
Lee PH.
Angew.
Chem. Int. Ed.
2002,
41:
3901
<A NAME="RU04709ST-10D">10d</A>
Pasto DJ.
Chou S.-K.
Waterhouse A.
Shults RH.
Hennion GF.
J. Org. Chem.
1978,
43:
1385
<A NAME="RU04709ST-11A">11a</A>
Sanz R.
Miguel D.
Martinez A.
Alvarez-Gutierrez
JM.
Rodriguez F.
Org. Lett.
2007,
9:
727
<A NAME="RU04709ST-11B">11b</A>
Huang W.
Wang J.
Shen Q.
Zhou X.
Tetrahedron
2007,
63:
11636
<A NAME="RU04709ST-11C">11c</A>
Ishikawa T.
Aikawa T.
Mori Y.
Saito S.
Org. Lett.
2003,
5:
51
<A NAME="RU04709ST-11D">11d</A>
Ishikawa T.
Okano M.
Aikawa T.
Saito S.
J. Org. Chem.
2001,
66:
4635
<A NAME="RU04709ST-12A">12a</A>
Myers AG.
Zheng B.
J.
Am. Chem. Soc.
1996,
118:
4492
<A NAME="RU04709ST-12B">12b</A>
Corey EJ.
Boaz NW.
Tetrahedron
Lett.
1984,
25:
3055
<A NAME="RU04709ST-12C">12c</A>
Parker KA.
Petraitis JJ.
Tetrahedron
Lett.
1977,
4561
<A NAME="RU04709ST-13">13</A>
General Procedure
for the Synthesis of Allene Derivatives 2: CBr4 (331
mg, 1.0 mmol), Ph3P (262 mg, 1.0 mmol), propargylic alcohol 1 (0.50 mmol), i-Pr2NEt
(129 mg, 1.0 mmol), P(n-Bu)3 (10
mg, 0.05 mmol), and a freshly distilled toluene (1 mL) were successively
added into a screw-capped vial, and the vial was sealed with a cap containing
a PTFE septum. The reaction mixture was stirred at 100 ˚C,
and monitored by TLC until the propargylic alcohol 1 was
consumed. To quench the reaction, H2O (2 mL) was added
to the mixture. The mixture was extracted with CH2Cl2 (3 ×),
and the combined organic extracts were dried over Na2SO4,
filtered, and then evaporated under reduced pressure. The crude
product was purified by silica gel chromatography(hexane) to produce
the allene derivative 2, and if necessary,
was further purified by a recycling preparative HPLC equipped with
a GPC column (chloroform as an eluent). Spectral data for selected compound:
1-(3-Bromo-1,2-nonadien-1-yl)benzene (2a): pale
yellow oil. ¹H NMR (300 MHz, CDCl3): δ = 0.86
(t, 3 H, J = 7.2 Hz), 1.24-1.38
(m, 6 H), 1.50 (quint, 2 H, J = 7.2 Hz),
2.52 (td, 2 H, J = 7.2, 3.0
Hz), 6.19 (t, 1 H, J = 3.0 Hz), 7.23-7.27
(m, 1 H), 7.32-7.33 (m, 4 H). ¹³C
NMR (75 MHz, CDCl3): δ = 13.9, 22.5,
27.9, 28.2, 31.4, 38.0, 96.1, 100.3, 127.7, 128.1, 128.7, 133.0,
199.8. MS (FAB): m/z (%) = 281 (100) [M+],
279 (40) [M+]. HRMS (FAB): m/z calcd
for C15H20Br: 279.0748; found: 279.0726.
<A NAME="RU04709ST-14A">14a</A>
Guo C.
Lu X.
J.
Chem. Soc., Perkin Trans. 1
1993,
1921
<A NAME="RU04709ST-14B">14b</A>
Trost BM.
Kazmaier U.
J. Am.
Chem. Soc.
1992,
114:
7933
<A NAME="RU04709ST-14C">14c</A>
Trost BM.
Schmidt T.
J. Am. Chem. Soc.
1988,
110:
2301
<A NAME="RU04709ST-14D">14d</A>
Lu X.
Ma D.
Pure Appl. Chem.
1990,
62:
723
<A NAME="RU04709ST-15">15</A> When the same reaction was conducted
with CCl4 instead of CBr4, the corresponding
chlorinated allene derivative was obtained in 40% yield.
For a selected paper on the SN2-type chlorination of
a primary alcohol using CCl4 and PPh3, see:
Lee JB.
Downie IM.
Tetrahedron
1967,
23:
359
<A NAME="RU04709ST-16">16</A>
General Procedure
for the Synthesis of Diene Derivatives 3: The same procedure
as above without i-Pr2NEt
gave the diene derivative 3. However, formation
of a quite small amount of the (1Z,3E)-diene along with the (1E,3E)-diene separable
by column chromatography was observed by NMR. Spectral data for
selected compound: [(1E,3E)-3-Bromo-1,3-nonadien-1-yl]benzene
(3a): pale brown oil. ¹H NMR
(300 MHz, CDCl3): δ = 0.88 (t, 3 H, J = 7.2 Hz), 1.27 (m, 3 H),
1.35 (m, 1 H), 1.47 (m, 2 H), 2.35 (q, 2 H, J = 7.2 Hz),
6.08 (t, 1 H, J = 7.2 Hz), 6.73
(d, 1 H, J = 15.0 Hz), 6.89 (d,
1 H, J = 15.0 Hz), 7.23 (m,
1 H), 7.30 (m, 2 H), 7.42 (m, 2 H). ¹³C
NMR (75 MHz, CDCl3): δ = 13.9, 22.4,
28.1, 31.4, 31.7, 126.7, 126.9, 127.7, 127.9, 128.6, 128.7, 132.1,
135.3. MS (EI): m/z = 279 [M+].
HRMS (FAB): m/z calcd
for C15H20Br: 279.0748; found: 279.0728. Stereochemistry (1E,3E) of the
isolated compound was determined by
the chemical shift
and coupling constant of the related compound. Specific peaks derived
from (1Z,3E)-diene 3a were observed by ¹H
NMR. ¹H NMR: δ = 5.87 (t,
1 H, J = 7.2 Hz), 6.76 (d, 2
H, J = 15.0 Hz), 6.94 (d, 1
H, J = 15.0 Hz). Other peaks
overlapped with those of the (1E,3E)-diene.
<A NAME="RU04709ST-17">17</A>
We have no clear cause for the low
yield of diene derivative 3; however, formation
of several complex products, which were probably derived from the
starting propargylic alcohol, was observed by an NMR measurement.
<A NAME="RU04709ST-18A">18a</A>
Slagle JD.
Huang TTS.
Franzus B.
J.
Org. Chem.
1981,
46:
3526
<A NAME="RU04709ST-18B">18b</A>
Jones LA.
Sumner CE.
Franzus B.
Huang TTS.
Snyder EI.
J. Org. Chem.
1978,
43:
2821