Synlett 2009(13): 2109-2114  
DOI: 10.1055/s-0029-1217567
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Trapping of an Ammonium Ylide with Activated Ketones: Synthesis of β-Hydroxy-α-Amino Esters with Adjacent Quaternary Stereocenters

Xin Guo, Yongli Yue, Guoliang Hu, Jing Zhou, Yiqing Zhao, Liping Yang, Wenhao Hu*
Department of Chemistry, East China Normal University, Shanghai 200062, P. R. of China
Fax: +86(21)62233176; e-Mail: whu@chem.ecnu.edu.cn;
Further Information

Publication History

Received 31 March 2009
Publication Date:
15 July 2009 (online)

Abstract

A novel Rh2(OAc)4-catalyzed three-component reaction of diazoacetates, anilines, and activated ketones via ammonium ylide trapping processes is reported. The reaction of isatins afforded α-amino-β-hydroxy esters bearing the 3-substituted 3-hydroxyindolin-2-one moiety with vicinal quaternary carbon centers in one step with high chemo- and diastereoselectivity. Extension of the reaction to acyclic α-keto esters afforded 2-hydroxy-2-alkyl-3-aryl-3-(phenylamino) succinates in moderate yield and diastereoselectivity.

    References and Notes

  • Recent reviews:
  • 1a Rao AVR. Gurjar MK. Reddy KL. Rao AS. Chem. Rev.  1995,  95:  2135 
  • 1b Nicolaou KC. Boddy CN. Bräse S. Winssinger N. Angew. Chem. Int. Ed.  1999,  38:  2096 
  • 1c Williams DH. Bardsley B. Angew. Chem. Int. Ed.  1999,  38:  1172 
  • 2 Fles D. Balenovic B. J. Am. Chem. Soc.  1956,  78:  3072 
  • 3a VanMiddlesworth F. Durfresne C. Wincott FE. Mosley RT. Wilson KE. Tetrahedron Lett.  1992,  33:  297 
  • 3b Horn WS. Smith JL. Bills GF. Raghoobar SL. Helms GL. Kurtz MB. Marrinan JA. Frommer BR. Thornton RA. Mandala SM. J. Antibiot.  1992,  45:  1692 
  • 4 Heimgartner H. Angew. Chem., Int. Ed. Engl.  1991,  30:  238 
  • 5 Rando RR. Acc. Chem. Res.  1975,  8:  281 
  • 6a Miller MJ. Acc. Chem. Res.  1986,  19:  49 
  • 6b Tanner D. Angew. Chem., Int. Ed. Engl.  1994,  33:  599 
  • 7a Bergmeier SC. Tetrahedron  2000,  56:  2561 
  • 7b Li G. Chang H.-T. Sharpless BK. Angew. Chem., Int. Ed. Engl.  1996,  35:  451 
  • 8 Larrow JF. Schaus SE. Jacobsen EN. J. Am. Chem. Soc.  1996,  118:  7420 
  • 9 Olofsson B. Somfai P. J. Org. Chem.  2002,  67:  8574 
  • 10 Hu XE. Tetrahedron  2004,  60:  2701 
  • 11 Guanti G. Banfi L. Narisano E. Tetrahedron  1988,  44:  5553 
  • 12 Fernandez-Megia E. Paz MM. Sardina FJ. J. Org. Chem.  1994,  59:  7643 
  • 13a Maurer PJ. Takahata H. J. Am. Chem. Soc.  1984,  106:  1095 
  • 13b Roemmele RC. Rapoport H. J. Org. Chem.  1989,  54:  1866 
  • 14a Suga H. Shi X. Ibata T. Kakehi A. Heterocycles  2001,  55:  1711 
  • 14b Griesbeck AG. Bondock S. Lex J. Org. Biomol. Chem.  2004,  2:  1113 
  • 14c Griesbeck AG. Bondock S. Monatsh. Chem.  2006,  137:  765 
  • 14d Griesbeck AG. Bondock S. Aust. J. Chem.  2008,  61:  573 
  • With glycine-derived enolates:
  • 15a Horikawa M. Busch-Petersen J. Corey EJ. Tetrahedron Lett.  1999,  40:  3843 
  • 15b Yoshikawa N. Shibasaki M. Tetrahedron  2002,  58:  8289 
  • 15c Ooi T. Taniguchi M. Kameda M. Maruoka K. Angew. Chem. Int. Ed.  2002,  41:  4542 
  • For reviews on MCR, see:
  • 16a Dömling A. Ugi I. Angew. Chem. Int. Ed.  2000,  39:  3168 
  • 16b Orru R. Greef M. Synthesis  2003,  1471 
  • 16c Ramón D. Yus M. Angew. Chem. Int. Ed.  2005,  44:  1602 
  • 16d Zhu J. Eur. J. Org. Chem.  2003,  1133 
  • 17a Wang Y. Zhu Y. Chen Z. Mi A. Hu W. Doyle M. Org. Lett.  2003,  5:  3924 
  • 17b Wang Y. Chen Z. Mi A. Hu W. Chem. Commun.  2004,  2486 
  • 17c Lu C.-D. Liu H. Chen Z.-Y. Hu W.-H. Mi A.-Q. Org. Lett.  2005,  7:  83 
  • 17d Lu C.-D. Liu H. Chen Z.-Y. Hu W.-H. Mi A.-Q. Chem. Commun.  2005,  2624 
  • 17e Huang H. Wang Y. Hu W. Adv. Synth. Catal.  2005,  347:  531 
  • 17f Huang H. Guo X. Hu W. Angew. Chem. Int. Ed.  2007,  46:  1337 
  • 17g Guo X. Huang H. Yang L. Hu W. Org. Lett.  2007,  9:  4721 
  • 17h Zhang X. Huang H. Guo X. Guan X. Yang L. Hu W. Angew. Chem. Int. Ed.  2008,  47:  6647 
  • 17i Hu W. Xu X. Zhou J. Liu W. Huang H. Hu J. Yang L. Gong L. J. Am. Chem. Soc.  2008,  130:  7782 
  • 17j Yue Y. Guo X. Chen Z. Yang L. Hu W. Tetrahedron Lett.  2008,  49:  6862 
  • 18 Kohno J. Koguchi Y. Nishio M. Nakao K. Juroda M. Shimizu R. Ohnuki T. Komatsubara S. J. Org. Chem.  2000,  65:  990 
  • 19 Suzuki H. Morita H. Shiro M. Kobayashi J. Tetrahedron  2004,  60:  2489 
  • 20a Rasmussen HB. MacLeod JK. J. Nat. Prod.  1997,  60:  1152 
  • 20b Kawasaki T. Nagaoka M. Satoh T. Okamoto A. Ukon R. Ogawa A. Tetrahedron  2004,  60:  3493 
  • 21a Tokunaga T. Hume WE. Umezome T. Okazaki K. Ueki Y. Kumagai K. Hourai S. Nagamine J. Seki H. Taiji M. Noguchi H. Nagata R. J. Med. Chem.  2001,  44:  4641 
  • 21b Nagamine J. Nagata R. Seki H. Nomura-Akimaru N. Ueki Y. Kumagai K. Taiji M. Noguchi H. J. Endocrinol.  2001,  171:  481 
  • 21c Tokunaga T. Hume WE. Nagamine J. Kawamura T. Taiji M. Nagata R. Bioorg. Med. Chem. Lett.  2005,  15:  1789 
22

General Procedure: To a refluxing CH2Cl2 (5 mL) solution of Rh2(OAc)4 (2.25 mg, 1 mol%), anilines 2 (0.60 mmol), and 3 or 6 (0.50 mmol) under argon atmosphere was added diazoacetates 1 (0.60 mmol) in CH2Cl2 (2 mL) over 2 h via a syringe pump. After the addition was completed, the reaction mixture was cooled to r.t. Solvent was removed, and the crude product was purified by flash column chromatog-raphy on silica gel eluting with EtOAc-PE to give 4 and 5 or 7 and 8.
Compound 4l: 50% yield. ¹H NMR (500 MHz, CDCl3-TMS): δ = 7.53-7.52 (d, J = 7.5 Hz, 1 H), 7.40-7.12 (m, 5 H), 6.86-6.78 (m, 4 H), 5.00 (d, J = 11.4 Hz, 1 H), 4.58 (d, J = 11.4 Hz, 1 H), 4.10 (s, 1 H), 3.99-3.94 (m, 2 H), 3.17 (s, 3 H), 0.98v0.95 (t, J = 7.0 Hz, 3 H). ¹³C NMR (125 MHz, CDCl3-TMS): δ = 175.7, 170.3, 146.0, 144.2, 130.6, 129.2, 126.2, 125.0, 123.1, 119.8, 115.0, 108.5, 74.72, 63.2, 61.3, 26.1, 13.5. ESI-HRMS: m/z calcd for C19H20N2NaO4 [M + Na]+: 363.1315; found: 363.1321.

23

Crystal Data for erythro -4a: C24H22N2O4, M w = 420.44, orthorhombic, space group Pbca, a = 8.9039 (9) Å, b = 15.0755 (15) Å, c = 31.070 (3) Å, V = 4170.5 (7) ų, Z = 8, ρ calcd = 1.282 mg/m³, F(000) = 1696, λ = 0.71073 Å, T = 293 (2) K, µ(MoKα) = 0.08 mm. Data for the structure were collected on a Siemens P-4X four-circle diffracto-meter. Intensity measurements were performed on a crystal (dimensions 0.48 × 0.44 × 0.40 mm). In the range 2.62 < 2θ < 52.04, of the 16851 measured reflections, 4087 were independent (Rint = 0.0817). The structures were solved by direct methods (SHELXS-97) and refined by full-matrix least-squares on F ². The final refinements converged at R 1 = 0.0512 for I > 2σ(I), and wR 2 = 0.1104 for all data. The final difference Fourier synthesis gave a min/max residual electron density of -0.200/-0.166 e Å. CCDC-716407 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www. ccdc.cam.ac.uk [or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK, fax +44 (1223)762910, or deposit@ccdc.cam.ac.uk].

24

Crystal Data for erythro -7a: C19H21NO5, M w = 343.37, monoclinic, space group P2 (1)/c, a = 14.293 (2) Å, b = 6.574 (1) Å, c = 19.822 (3) Å, β = 108.19 (1), V = 1769.4 (5) ų, Z = 4, ρ calcd = 1.289 mg/m³, F(000) = 728, λ = 0.71073 Å, T = 296 (2) K, µ(MoKα) = 0.096 mm. Data for the structure were collected on a Siemens P-4X four-circle diffractometer. Intensity measurements were performed on a crystal (dimensions 0.62 × 0.56 × 0.48mm). In the range 3 < 2θ < 54, Of the 4773 measured reflections, 3875 were inde-pendent (R int = 0.0138). The structure was solved by direct methods (SHELXS-97) and refined by full-matrix least-squares on F ². The final refinements converged at R1 = 0.0399 for I > 2σ(I), wR 2 = 0.0979 for all data. The final difference Fourier synthesis gave a min/max residual electron density of -0.177/+0.19 e Å. CCDC-686324 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www. ccdc.cam.ac.uk [or from the Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, UK, fax +44 (1223)762910, or deposit@ccdc.cam.ac.uk].