Synlett 2009(9): 1520-1521  
DOI: 10.1055/s-0029-1217180
SPOTLIGHT
© Georg Thieme Verlag Stuttgart ˙ New York

Iodoxybenzene (PhIO2)

Cai Zhang*
College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. of China
e-Mail: [email protected];

Further Information

Publication History

Publication Date:
18 May 2009 (online)

Biographical Sketches

Cai Zhang was born in Anhui Province, P. R. of China. He received his B.Sc. (2005) from Huaibei Coal Industry Teachers College, Anhui, P. R. of China. He is currently pursuing his M.Sc. under the ­tutelage of Professor Dacheng Yang at Southwest University, Chongqing, P. R. of China. His current research interests include the development of hypervalent iodine for application in organic synthesis.

Introduction

Iodoxybenzene (PhIO2, mp 230 ˚C) is the first organic compound of iodine(V) prepared by Willgerodt 100 years ago. [¹] Specifically, it can be prepared by disproportionation of iodosylbenzene under steam distillation. [²] Ten years ago iodoxybenzene has been used for the synthesis of cadalenquinone, [³a] unsaturated carbonyl compounds [³b-c] , oxodienes, [³d-e] , epoxides, [³f] quinine imines, [³g] and sulfones. [³h] In this Spotlight recent applications using PhIO2 in organic syntheses are summarized.

Preparation

Iodoxybenzene (PhIO2) can be directly prepared using commercial 40% peracetic acid or sodium periodate by dissolving iodobenzene in water (Scheme  [¹] ). [4]

Scheme 1

Abstracts

(A) Kita et al. show the solubilization and activation of PhIO2 by adding catalytic amounts of both cetyltrimethylammonium bromide (CTAB) or MgBr2 and a chiral tartaric acid derivative. Both reagents were indispensable for the enhancement of chemical and optical yields in the oxidation of sulfides to sulfoxides. [5]

(B) The application of PhIO2 in the oxidation reaction of phosphorous, phosphorothiono and phosphoroseleno compounds into the corresponding ºP(O) analogues was demonstrated by Lopusinski et al. [6a] The direct conversion of ammonium dialkyl phosphoro­selenoates into the dialkyl phosphoramidates using iodoxybenzene has been developed by the same group. [6b]

(C) The reaction performed between N-sulfinylphosphoramidate and PhIO2 in the presence of diethylphosphoramidate results in the formation of N,N-bis(diethylphosphor)sulfamide. [7]

(D) Catalytic allylic oxidation of alkenes into enones and oxidation of aryl alkyl ketones into the corresponding ketoacids with a fluorous seleninic acid as catalyst in conjunction with PhIO2 as reoxidant have been developed by Zou and co-worker. [8]

(E) Recently, air-driven conversion of alcohols into carbonyl compounds in water using catalytic amounts of PhIO2 has been reported by Liu and co-workers. [9]

    References

  • 1 Willgerodt C. Die Organischen Verbindungen mit Mehrwertigem Jod   Enke Verlag; Stuttgart: 1914. 
  • 2 Willgerodt C. J. Prakt. Chem.  1886,  33:  154 
  • 3a Reddy N. Kesavulu Rao. G SK. Indian J. Chem., Section B: Org, Chem. Incl. Med. Chem.  1987,  26B:  920 
  • 3b Barton DHR. Crich D. Tetrahedron  1985,  41:  4359 
  • 3c Gleiter R. Mueller G. J. Org. Chem.  1988,  53:  3912 
  • 3d Künzer H. Sauer G. Wiechert R. Tetrahedron  1989,  45:  6409 
  • 3e Iida T. Nishida S. Chang FC. Niwa T. Goto J. Nambara T. Chem. Pharm. Bull.  1993,  41:  763 
  • 3f Barret R. Sabot JP. Pautet F. Cerf P. Daudon M. Oxidation Communications  1989,  12:  55 
  • 3g Barret R. Daudon M. 1990,  20:  1543 
  • 3h Barret R. Pautet F. Bordat P. Tinland B. Daudon M. Phosphorus, Sulfur and Silicon and the Related Elements  1989,  45:  31 
  • 4a Sharefkin JG. Saltzman H. Org. Synth.  1963,  43:  65 
  • 4b Kazmierczak P. Skulski L. Kraszkiewicz L. Molecules  2001,  6:  881 
  • 5a Tohma H. Takizawa S. Watanabe H. Fukuoka Y. Maegawa T. Kita Y. J. Org. Chem.  1999,  64:  3519 
  • 5b Tohma H. Takizawa S. Morioka H. Maegawa T. Kita Y. Chem. Pharm. Bull.  2000,  48:  445 
  • 6a Mielniczak G. Lopusinski A. Synlett  2001,  505 
  • 6b Mielniczak G. Lopusinski A. Heteroatom Chem.  2003,  14:  121 
  • 7 Mielniczak G. Lopusinski A. Heteroatom Chem.  2008,  19:  530 
  • 8a Crich D. Zou Y. Org. Lett.  2004,  6:  775 
  • 8b Crich D. Zou Y. J. Org. Chem.  2005,  70:  3309 
  • 9 Mu RZ. Liu ZQ. Yang ZJ. Liu ZG. Wu LM. Liu ZL. Adv. Synth. Catal.  2005,  347:  1333 

    References

  • 1 Willgerodt C. Die Organischen Verbindungen mit Mehrwertigem Jod   Enke Verlag; Stuttgart: 1914. 
  • 2 Willgerodt C. J. Prakt. Chem.  1886,  33:  154 
  • 3a Reddy N. Kesavulu Rao. G SK. Indian J. Chem., Section B: Org, Chem. Incl. Med. Chem.  1987,  26B:  920 
  • 3b Barton DHR. Crich D. Tetrahedron  1985,  41:  4359 
  • 3c Gleiter R. Mueller G. J. Org. Chem.  1988,  53:  3912 
  • 3d Künzer H. Sauer G. Wiechert R. Tetrahedron  1989,  45:  6409 
  • 3e Iida T. Nishida S. Chang FC. Niwa T. Goto J. Nambara T. Chem. Pharm. Bull.  1993,  41:  763 
  • 3f Barret R. Sabot JP. Pautet F. Cerf P. Daudon M. Oxidation Communications  1989,  12:  55 
  • 3g Barret R. Daudon M. 1990,  20:  1543 
  • 3h Barret R. Pautet F. Bordat P. Tinland B. Daudon M. Phosphorus, Sulfur and Silicon and the Related Elements  1989,  45:  31 
  • 4a Sharefkin JG. Saltzman H. Org. Synth.  1963,  43:  65 
  • 4b Kazmierczak P. Skulski L. Kraszkiewicz L. Molecules  2001,  6:  881 
  • 5a Tohma H. Takizawa S. Watanabe H. Fukuoka Y. Maegawa T. Kita Y. J. Org. Chem.  1999,  64:  3519 
  • 5b Tohma H. Takizawa S. Morioka H. Maegawa T. Kita Y. Chem. Pharm. Bull.  2000,  48:  445 
  • 6a Mielniczak G. Lopusinski A. Synlett  2001,  505 
  • 6b Mielniczak G. Lopusinski A. Heteroatom Chem.  2003,  14:  121 
  • 7 Mielniczak G. Lopusinski A. Heteroatom Chem.  2008,  19:  530 
  • 8a Crich D. Zou Y. Org. Lett.  2004,  6:  775 
  • 8b Crich D. Zou Y. J. Org. Chem.  2005,  70:  3309 
  • 9 Mu RZ. Liu ZQ. Yang ZJ. Liu ZG. Wu LM. Liu ZL. Adv. Synth. Catal.  2005,  347:  1333 

Scheme 1