RSS-Feed abonnieren
DOI: 10.1055/s-0029-1216979
A Short and Convenient Synthesis of Enantiopure cis- and trans-4-Hydroxypipecolic Acid
Publikationsverlauf
Publikationsdatum:
28. August 2009 (online)

Abstract
The synthesis of (2S,4R)- and (2R,4R)-4-hydroxypipecolic acid has been realized from commercial ethyl (R)-4-cyano-3-hydroxybutanoate through palladium-catalyzed methoxycarbonylation of a 4-hydroxy-substituted lactam-derived vinyl phosphate followed by the stereocontrolled reduction of the enamine double bond. The stereoselective hydrogenation of the suitably 4-hydroxy-protected enantiomer afforded the cis-(2S,4R)-4-hydroxypipecolic acid product, obtained in 66% overall yield over seven steps. The trans-product (42% overall yield over 8 steps) was instead obtained by hydride conjugate addition to the same α,β-unsaturated ester.
Key word
amino acids - carbonylations - coupling - lactams - palladium
- 1a
Romeo JT.Swain LA.Bleecker AB. Phytochemistry 1983, 22: 1615Reference Ris Wihthout Link - 1b
Schenk VW.Schutte HF. Flora 1963, 153: 426Reference Ris Wihthout Link - 2a
Cocito C. Microbiol. Rev. 1979, 43: 145Reference Ris Wihthout Link - 2b
Vanderhaeghe H.Janssen G.Compernolle F. Tetrahedron Lett. 1971, 12: 2687Reference Ris Wihthout Link - 3
Clark-Lewis JW.Mortimer PI. Nature 1959, 184: 1234 - 4
Aiello A.Fattorusso E.Giordano A.Menna M.Müller WEG.Perović-Ottstadt S.Schröder HC. Bioorg. Med. Chem. 2007, 15: 5877 - 5
Gupta RK.Krishnamurti M. Phytochemistry 1979, 18: 2021 - 6
Evans SV.Shing TK.Aplin RT.Fellows LE.Fleet GWJ. Phytochemistry 1985, 24: 2593 - 7a
Copeland TD.Wondrak EM.Toszer J.Roberts MM.Oroszlan S. Biochem. Biophys. Res. Commun. 1990, 169: 310Reference Ris Wihthout Link - 7b
Dragovich PS.Parker JE.French J.Inbacuan M.Kalish VJ.Kissinger CR.Knighton DR.Lewis CT.Moomaw EW.Parge HE.Pelletier LAK.Prins TJ.Showalter RE.Tatlock JH.Tucker KD.Villafranca JE. J. Med. Chem. 1996, 39: 1872Reference Ris Wihthout Link - 7c
Gillard J.Abraham A.Anderson PC.Beaulieu PL.Bogri T.Bousquet Y.Grenier L.Guse Y.Lavellée P. J. Org. Chem. 1996, 61: 2226Reference Ris Wihthout Link - 7d
Ho B.Zabriskie TM. Bioorg. Med. Chem. Lett. 1998, 8: 739Reference Ris Wihthout Link - 7e
Skiles JW.Giannousis PP.Fales KR. Bioorg. Med. Chem. Lett. 1996, 6: 963Reference Ris Wihthout Link - 8a
Ornstein PL.Schoepp DD.Arnold MB.Leander JD.Lodge D.Paschal JW.Elzey T. J. Med. Chem. 1991, 34: 90Reference Ris Wihthout Link - 8b
Hays SJ.Malone TC.Johnson G. J. Org. Chem. 1991, 56: 4084Reference Ris Wihthout Link - 9a
Anderson PC,Soucy F,Yoakim C,Lavallée P, andBeaulieu PL. inventors; US 5,545.Reference Ris Wihthout Link - 9b
Lamarre D.Croteau G.Wardrop E.Bourgon L.Thibeault D.Clouette C.Vaillancourt M.Cohen E.Pargellis C.Yoakim C.Anderson PC. Antimicrob. Agents Chemother. 1997, 41: 965Reference Ris Wihthout Link - 10
Bellier B.Da Nascimiento S.Meudal H.Gincel E.Roques BP.Garbay C. Bioorg. Med. Chem. Lett. 1998, 8: 1419 - For a recent review on the asymmetric synthesis of pipecolic acids and derivatives see:
- 11a
Kadouri-Puchot C.Comesse S. Amino Acids 2005, 29: 101Reference Ris Wihthout Link - 11b
Cordero FM.Bonollo S.Machetti F.Brandi A. Eur. J. Org. Chem. 2006, 3235Reference Ris Wihthout Link - 12a
Sun C.-S.Lin Y.-S.Hou D.-R. J. Org. Chem. 2008, 73: 6877Reference Ris Wihthout Link - 12b
Lloyd RC.Lloyd MC.Smith MEB.Holt KE.Swift JP.Keene PA.Taylor SJC.McCague R. Tetrahedron 2004, 60: 717Reference Ris Wihthout Link - 12c
Marin J.Didierjean C.Aubry A.Casimir J.-R.Briand J.-P.Guichard G. J. Org. Chem. 2004, 69: 130Reference Ris Wihthout Link - 12d
Celestini P.Danieli B.Lesma G.Sacchetti A.Silvani A.Passarella D.Virdis A. Org. Lett. 2002, 4: 1367Reference Ris Wihthout Link - 12e
Greshock TJ.Funk RL. J. Am. Chem. Soc. 2002, 124: 754Reference Ris Wihthout Link - 12f
Agami C.Bisaro F.Comesse S.Guesné S.Kadouri-Puchot C.Morgentin R. Eur. J. Org. Chem. 2001, 2385Reference Ris Wihthout Link - 12g
Sabat M.Johnson CR. Tetrahedron Lett. 2001, 42: 1209Reference Ris Wihthout Link - 12h
Davis FA.Fang T.Chao B.Burns DM. Synthesis 2000, 2106Reference Ris Wihthout Link - 12i
Brooks CA.Comins DL. Tetrahedron Lett. 2000, 41: 3551Reference Ris Wihthout Link - 12j
Haddad M.Larchevêque M. Tetrahedron: Asymmetry 1999, 10: 4231Reference Ris Wihthout Link - 12k
Di Nardo C.Varela O. J. Org. Chem. 1999, 64: 6119Reference Ris Wihthout Link - 12l
Golubev A.Sewald N.Burger K. Tetrahedron Lett. 1995, 36: 2037Reference Ris Wihthout Link - 13
Occhiato EG.Scarpi D.Guarna A. Eur. J. Org. Chem. 2008, 524 - 14a
Anelli PL.Fedeli F.Gazzotti O.Lattuada L.Lux G.Rebasti F. Bioconjugate Chem. 1999, 10: 137Reference Ris Wihthout Link - 14b
Chen H.Feng Y.Xu Z.Ye T. Tetrahedron 2005, 61: 11132Reference Ris Wihthout Link - For a review see:
- 16a
Occhiato EG. Mini-Rev. Org. Chem. 2004, 1: 149Reference Ris Wihthout Link - Recent progresses in the use of heterocyclic-derived vinyl phosphates:
- 16b
Claveau E.Gillaizeau I.Blu J.Bruel A.Coudert G. J. Org. Chem. 2007, 72: 4832 ; and references thereinReference Ris Wihthout Link - 16c
Lo Galbo F.Occhiato EG.Guarna A.Faggi C. J. Org. Chem. 2003, 68: 6360Reference Ris Wihthout Link - 17
Cacchi S.Morera E.Ortar G. Tetrahedron Lett. 1985, 26: 1109 - 19
Kaisalo LH.Hase TA. Tetrahedron Lett. 2001, 42: 7699 - 20
Crabtree RH.Davis MW. J. Org. Chem. 1986, 51: 2655 ; The reaction was carried out in CH2Cl2 under H2 at 1 atm (no conversion after 24 h) and 50 atm. In the latter case we observed a certain degree of conversion after 24 h (40%) but the facial selectivity was poor (ratio trans/cis ˜3:2)Reference Ris Wihthout Link - 22a
Herdeis C.Engel W. Arch. Pharm. (Weinheim) 1993, 326: 297Reference Ris Wihthout Link - 22b
Herdeis C.Engel W. Arch. Pharm. (Weinheim) 1992, 325: 419Reference Ris Wihthout Link - Compound (2R,4R)-13, possessing trans-stereochemistry, is easily differentiated by ¹H NMR from its cis-isomer especially as the axially oriented proton on C4 is now shielded from δ = 4.15 to 3.70. Moreover in the trans-compound there is an NOE enhancement between H4 and H6axial. Enantiopure cis-isomer (2S,4R)-13 has been already prepared by us (see ref. 13) and, in its racemic form, by Hiemstra and Speckamp. See:
- 24a
Esch PM.de Boer RF.Hiemstra H.Boska IM.Speckamp WN. Tetrahedron 1991, 47: 4063Reference Ris Wihthout Link - 24b
Esch PM.Boska IM.Hiemstra H.de Boer RF.Speckamp WN. Tetrahedron 1991, 47: 4039Reference Ris Wihthout Link - 25
Bartali L.Scarpi D.Guarna A.Prandi C.Occhiato EG. Synlett 2009, 913 - 26a
Agami C.Couty F.Poursoulis M.Vaissermann J. Tetrahedron 1992, 48: 431Reference Ris Wihthout Link - 26b
Golubev AS.Sewald N.Burger K. Tetrahedron 1996, 52: 14757Reference Ris Wihthout Link
References
Purification is not necessary, but a much cleaner lactam is obtained if the protected nitrile is purified by chromatography.
18Elimination of ROH to give an α,β,γ,δ-unsaturated ester has been sometime observed by us in the presence of acids, even when compound 10 was stored in fridge and traces of acids were present. The same elimination occurs with phosphate 9.
21Compounds trans-12a, trans-12b, and trans-12c ¹³ are easily differentiated from the corresponding cis-compounds by ¹H NMR analysis. In trans-compounds, the H2 is shifted downfield [trans-12a: δ = 5.02 and 4.86 (two rotamers); trans-12b: δ = 5.06 and 4.91 (two rotamers); trans-12c: δ = 4.98 and 4.83 (two rotamers)] and H6axial is upfield shifted (˜3.00 ppm in trans-12a,b,c) compared to the corresponding protons in the cis-isomers: H2 resonates at cis-12a: δ = 4.80 and 4.64, cis-12b: δ = 4.77 and 4.62, cis-12c: δ = 4.78 and 4.63; H6axial resonates for cis-12a-c at ca. δ = 3.45. The same applies to the corresponding alcohols: in trans-compound 13 H2 resonates at δ = 5.04 and 4.90 (two rotamers) and H6axial at ca. δ = 3.0. In the corresponding cis-isomer,¹³ H2 resonates at δ = 4.85 and 4.70 (two rotamers) and H6axial is shifted downfield to δ = 3.4.
23Compound 14 was recovered only in traces after chromatography as it probably decomposed in part. Compound 14 has a diagnostic downfield shifted H4 proton to δ = 4.97, in accordance with the value (δ = 4.90-5.00) reported for the analogous N-tosyl and N-Cbz compounds (see ref. 22). 14: ¹H NMR (200 MHz, CDCl3): δ = 4.97 (m, 1 H), 4.90-4.70 (br m, 1 H), 4.30-4.00 (br m, 1 H), 3.74 (s, 3 H), 3.35-3.15 (br m, 1 H), 2.55-2.40 (m, 1 H), 2.40-2.37 (m, 1 H), 2.14-2.05 (m, 1 H), 1.98-1.85 (m, 1 H).