Subscribe to RSS
DOI: 10.1055/s-0029-1216745
A Convenient Synthesis of 1-Substituted 1,2,3-Triazoles via CuI/Et3N Catalyzed ‘Click Chemistry’ from Azides and Acetylene Gas
Publication History
Publication Date:
04 May 2009 (online)

Abstract
Copper(I)-catalyzed ‘click chemistry’ using acetylene gas was successfully explored under mild conditions. 1-Substituted-1,2,3-triazoles were conveniently synthesized from the corresponding aromatic and aliphatic azides.
Key words
azides - copper(I) catalysis - click chemistry - acetylene gas - 1,2,3-triazoles
- Supporting Information for this article is available online:
- Supporting Information (PDF)
- Reviews on 1,2,3-triazoles, see:
- 1a
Fan W.-Q.Katritzky AR. In Comprehensive Heterocyclic Chemistry II Vol. 4:Katritzky AR.Rees CW.Scriven EFV. Elsevier; Oxford, UK: 1996. p.1-126Reference Ris Wihthout Link - 1b
Dehne H. In Methoden der Organischen Chemie (Houben-Weyl) Vol. E8d:Schumann E. Thieme; Stuttgart: 1994. p.305Reference Ris Wihthout Link - 2a
Kolb HC.Finn MG.Sharpless KB. Angew. Chem. Int. Ed. 2001, 40: 2004Reference Ris Wihthout Link - 2b
Rostovtsev VV.Green LG.Fokin VV.Sharpless KB. Angew. Chem. Int. Ed. 2002, 41: 2596Reference Ris Wihthout Link - 2c
Tornøe CW.Christensen C.Meldal M.
J. Org. Chem. 2002, 67: 3057Reference Ris Wihthout Link - For recent reviews, see:
- 3a
Bock VD.Hiemstra H.van Maarseveen JH. Eur. J. Org. Chem. 2006, 51Reference Ris Wihthout Link - 3b
Fournier D.Hoogenboom R.Schubert US. Chem. Soc. Rev. 2007, 36: 1369Reference Ris Wihthout Link - 3c
Moses JE.Moorhouse AD. Chem. Soc. Rev. 2007, 36: 1249Reference Ris Wihthout Link - 3d
Wu P.Fokin VV. Aldrichimica Acta 2007, 40: 7Reference Ris Wihthout Link - 3e
Tron GC.Pirali T.Billington RA.Canonico PL.Sorba G.Genazzani AA. Med. Res. Rev. 2008, 28: 278Reference Ris Wihthout Link - 3f
Gil MV.Arévalo MJ.López . Synthesis 2007, 1589Reference Ris Wihthout Link - 3g
Meldal M.Tornøe CW. Chem. Rev. 2008, 108: 2952Reference Ris Wihthout Link - For examples, see:
- 4a
Whiting M.Muldoon J.Lin Y.-C.Silverman SM.Lindstrom W.Olson AJ.Kolb HC.Finn MG.Sharpless KB.Elder JH.Fokin VV. Angew. Chem. Int. Ed. 2006, 45: 1435Reference Ris Wihthout Link - 4b
Kolb HC.Sharpless KB. Drug Discov. Today 2003, 8: 1128Reference Ris Wihthout Link - 4c
Ye CF.Gard GL.Winter RW.Syvret RG.Twamley B.Shreeve JM. Org. Lett. 2007, 9: 3841Reference Ris Wihthout Link - 4d
Angelos S.Yang YW.Patel K.Stoddart JF.Zink JI. Angew. Chem. Int. Ed. 2008, 47: 2222Reference Ris Wihthout Link - 4e
Fazio F.Bryan MC.Blixt O.Paulson JC.Wong C.-H. J. Am. Chem. Soc. 2002, 124: 14397Reference Ris Wihthout Link - 4f
Lutz J.-F. Angew. Chem. Int. Ed. 2007, 46: 1018Reference Ris Wihthout Link - 5a
Krasinski A.Fokin VV.Sharpless KB. Org. Lett. 2004, 6: 1237Reference Ris Wihthout Link - 5b
Rasmussen LK.Boren BC.Fokin VV. Org. Lett. 2007, 9: 5337Reference Ris Wihthout Link - 5c
Zhang L.Chen X.Xue P.Sun HHY.Williams ID.Sharpless KB.Fokin VV.Jia G. J. Am. Chem. Soc. 2005, 127: 15998Reference Ris Wihthout Link - 5d
Ackermann L.Potukuchi HK.Landsberg D.Vicente R. Org. Lett. 2008, 10: 3081Reference Ris Wihthout Link - 5e
Boren BC.Narayan S.Rasmussen LK.Shang L.Zhao H.Lin Z.Jia G.Fokin VV. J. Am. Chem. Soc. 2008, 130: 8923Reference Ris Wihthout Link - 5f
Chuprakov S.Chernyak N.Dudnik AS.Gevorgyan V. Org. Lett. 2007, 9: 2333Reference Ris Wihthout Link - 6a
Fletcher JT.Walz SE.Keeney ME. Tetrahedron Lett. 2008, 49: 7030Reference Ris Wihthout Link - 6b
Song R.-J.Deng C.-L.Xie Y.-X.Li J.-H. Tetrahedron Lett. 2007, 48: 7845Reference Ris Wihthout Link - 6c
Taillefer M.Xia N.Ouali A. Angew. Chem. Int. Ed. 2007, 46: 934Reference Ris Wihthout Link - 6d
Cristau HJ.Cellier PP.Spindler J.-F.Taillefer M. Chem. Eur. J. 2004, 10: 5607Reference Ris Wihthout Link - 6e
Taillefer M,Cristau H.-J,Cellier PP, andSpindler J.-F. inventors; FR 2833947.Reference Ris Wihthout Link - 6f
Taillefer M,Cristau H.-J,Cellier PP, andSpindler J.-F. inventors; WO 0353225. ; Pr. Nb. Fr 2001 16547Reference Ris Wihthout Link - 6g
Taillefer M,Cristau H.-J,Cellier PP,Spindler J.-F, andOuali A. inventors; FR 2840303.Reference Ris Wihthout Link - 6h
Taillefer M,Cristau H.-J,Cellier PP,Spindler J.-F, andOuali A. inventors; WO 03101966. ; Pr. Nb. Fr 200206717Reference Ris Wihthout Link - 7a
Fan H.Xu G.Chen Y.Jiang Z.Zhang S.Yang Y.Ji R. Eur. J. Med. Chem. 2007, 42: 1137Reference Ris Wihthout Link - 7b
Kauer JC.Carboni RA. J. Am. Chem. Soc. 1967, 89: 2633Reference Ris Wihthout Link - 8a
Yan Z.-Y.Zhao Y.-B.Fan M.-J.Liu W.-M.Liang Y.-M. Tetrahedron 2005, 61: 9331Reference Ris Wihthout Link - 8b
Zhao Y.-B.Yan Z.-Y.Liang Y.-M. Tetrahedron Lett. 2006, 47: 1545Reference Ris Wihthout Link - 8c
Yan Z.-Y.Niu Y.-N.Wei H.-L.Wu L.-Y.Zhao Y.-B.Liang Y.-M. Tetrahedron: Asymmetry 2006, 17: 3288Reference Ris Wihthout Link - 8d
Wu L.-Y.Yan Z.-Y.Xie Y.-X.Niu Y.-N.Liang Y.-M. Tetrahedron: Asymmetry 2007, 18: 2086Reference Ris Wihthout Link - 8e
Niu Y.-N.Yan Z.-Y.Li G.-Q.Wei H.-L.Gao G.-L.Wu L.-Y.Liang Y.-M. Tetrahedron: Asymmetry 2008, 19: 912Reference Ris Wihthout Link - 9
Sonogashira K.Tohda Y.Hagihara N. Tetrahedron Lett. 1975, 16: 4467
References and Notes
The present reaction exhibited strong solvent effect, which is greatly different from the typical ‘click chemistry’. The discrepancy was presumed to cause by the acetylene gas. In the reactions, abundant reddish-brown precipitate was formed.
11Acetonitrile and DMSO-H2O both gave excellent results in the template reaction. But when other azides used, the yields decreased significantly. In MeCN, 2b and 2c were obtained, respectively, in 52% and 63% after 24 h. In DMSO-H2O (4:1), 4-methylphenyl azide was tried, but the yield was only poor 40%. Therefore, we chose DMSO as typical solvent in subsequent experiments. The reason of the discrepancy is unknown.
12
Typical Procedure
for Compound 2.
To a 5 mL flask with Et3N
(0.4 mmol), azides 1 (1.0 mmol), and solvent
(1.5 mL), CuI (0.1 mmol) was added into the mixture under N2 atmosphere.
The flask was purged with acetylene for several times. Then the
mixture was stirred under a balloon pressure of acetylene at r.t.
After the designed time, the mixture was diluted with 25 mL EtOAc, and
washed by 10 mL H2O for four times then by brine. The organic
phase dried over anhyd Na2SO4. After removal
of the solvent under reduced pressure, the residue was purified on
SiO2 with PE-EtOAc (4:1 to 1:2). Caution: Azides are potentially explosive
compounds and should be handled with great care.
Analytical Data
of Selected Products
Compound 2a:
white solid, mp 51-53 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 7.71 (s,
1 H), 7.48 (s, 1 H), 7.37 (m, 3 H), 7.27 (m, 2 H), 5.57 (s, 2 H)
ppm. ¹³C NMR (100 MHz, CDCl3): δ = 134.6,
134.0, 128.9, 128.5, 127.8, 123.3, 53.7 ppm. MS (EI): m/z = 159 [M+],
130, 104, 91, 77.
Compound 2b:
pale yellow solid, mp 52-53 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.04 (s,
1 H), 7.88 (s, 1 H), 7.77 (m, 2 H), 7.56 (m, 2 H), 7.47 (m, 1 H). ¹³C
NMR (100 MHz, CDCl3): δ = 137.5, 135.7,
130.0, 129.0, 122.8, 121.0 ppm. MS (EI): m/z = 145 [M+].
Compound 2c: ¹H NMR (400 MHz,
CDCl3): δ = 7.99 (s, 1 H), 7.80 (s,
1 H), 7.59 (d, J = 6.8
Hz, 2 H), 7.28 (d, J = 6.8 Hz,
2 H), 2.39 (s, 3 H) ppm. ¹³C NMR (100
MHz, CDCl3):
δ = 138.6, 134.5,
134.0, 130.0, 121.6, 120.2, 20.8 ppm.
MS (EI): m/z = 159 [M+].
Compound 2d: yellow oil. ¹H
NMR (400 MHz, CDCl3): δ = 7.98 (s,
1 H), 7.79 (s, 1 H), 7.54 (s, 1 H), 7.47 (d, J = 8.0
Hz, 1 H), 7.35 (d, J = 7.6
Hz, 1 H), 7.20 (d, J = 7.2
Hz, 1 H), 2.40 (s, 3 H) ppm. ¹³C NMR
(100 MHz, CDCl3): δ = 139.8, 136.8, 134.2,
129.34, 129.33, 121.7, 121.1, 117.5, 21.2 ppm.
MS (EI): m/z = 159 [M+].
Compound 2f: white solid, mp 78-80 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 7.94 (s,
1 H), 7.85 (s, 1 H), 7.65 (dd, J
1 = 6.9
Hz, J
2 = 2.1
Hz, 2 H), 7.03 (dd, J
1 = 6.9
Hz, J
2 = 2.1 Hz,
2 H), 3.88 (s, 3 H) ppm. ¹³C NMR (100
MHz, CDCl3):
δ = 160.1, 135.7,
131.1, 123.0, 122.6, 115.1, 55.9 ppm.
MS (EI): m/z = 175 [M+].
Compound 2g: pale yellow solid, mp 111-113 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.01 (s,
1 H), 7.85 (s, 1 H), 7.70 (d, J = 8.8
Hz, 2 H), 7.50 (d, J = 8.8
Hz, 2 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 138.6,
134.5, 134.0, 130.0, 121.6, 120.2, 20.8 ppm. MS (EI): m/z = 179 [M+].
Compound 2h: pale yellow solid, mp 91-93 ˚C. ¹H
NMR (400 MHz, CDCl3): δ = 8.05 (s,
1 H), 7.85 (s, 1 H), 7.79 (s, 1 H), 7.65 (d, J = 7.6
Hz, 1 H), 7.46 (d, J = 8.0
Hz, 1 H), 7.41 (d, J = 8.0
Hz, 1 H) ppm. ¹³C NMR (100 MHz, CDCl3): δ = 137.7,
135.4, 134.6, 130.8, 128.7, 121.7, 120.7, 118.5 ppm. MS (EI): m/z = 179 [M+].