Subscribe to RSS
DOI: 10.1055/s-0028-1124005
© Georg Thieme Verlag KG Stuttgart · New York
Pharmakokinetische Probleme in der Praxis
Rolle von ArzneimitteltransporternPharmacokinetic problems in clinical practice Role of drug transportersPublication History
eingereicht: 11.8.2008
akzeptiert: 11.12.2008
Publication Date:
10 February 2009 (online)

Zusammenfassung
Das Schicksal eines Arzneimittels im Organismus des Menschen wird unter anderem durch die Funktion des Arzneimittelmetabolismus und von Transportvorgängen bestimmt. Im Lauf der letzten Dekade wurden zahlreiche Transporter identifiziert, die bei der Aufnahme von Arzneimitteln und bei deren Ausscheidung beteiligt sind. Außerdem sind Arzneimitteltransporter häufig am Auftreten von Interaktionen beteiligt. Ziel dieser Arbeit ist es, die wesentlichen Entwicklungen der letzten Jahre auf dem Gebiet zusammenzufassen. Auswärtsgerichtete Transporter, sogenannte Effluxpumpen wie das multidrug resistance protein 1 (MDR1, ABCB1) werden im Darm exprimiert, wo sie Arzneimittel zurück in das Darmlumen sezernieren. Hemmstoffe von ABCB1 können die Bioverfügbarkeit von Arzneimitteln steigern, die normalerweise aktiv von ABCB1 in den Darm sezerniert werden. Andererseits können Arzneimittelinduktoren wie Rifampicin, Carbamazepin oder Johanniskrautextrakt die Expression von Transportern wie ABCB1 steigern. Hierdurch bedingt kommt es zu einer gesteigerten intestinalen Arzneimittelsekretion, die zusammen mit der Induktion des Arzneimittelmetabolismus zu einer deutlichen Abnahme der Plasmakonzentration einer Reihe von Arzneimitteln führen kann (z. B. von Ciclosporin). Zunehmend wird auch die Bedeutung von Aufnahmetransportern erkannt. SLCO1B1 ist ein hepatischer Aufnahmetransporter, der an der Resorption von Statinen beteiligt ist. Wird die Transportfunktion gehemmt oder liegen bestimmte genetische Varianten vor, die mit einer reduzierten Transportfunktion assoziiert sind, so kann wegen der geringeren hepatischen Aufnahme die Bioverfügbarkeit von Statinen steigen und damit auch das Risiko von Myopathien bis hin zu Rhabdomyolysen.
Summary
Drug disposition is controlled by drug metabolism and drug transport. In the last decade numerous drug transporters have been identified and characterized in the context of drug uptake, efflux and interactions. This article reviews major advancements in this field. Efflux pumps like the multidrug resistance protein 1 (MDR1, ABCB1) are expressed in the intestine where they secrete drugs back into the intestinal lumen. Inhibitors of ABCB1 can increase the bioavailability of such drugs due to an increased absorption. Inducers of metabolism (rifampicin, carbamazepine, St. John’s Wort) also induce the expression of drug transporters like ABCB1. Subsequently, an increased intestinal secretion in addition to an increased metabolism can diminish plasma levels of drugs, for example ciclosporin. The relevance of uptake transporters is increasingly recognized. SLCO1B1 is a hepatic uptake transporter involved in the absorption of statins. Inhibition of SLCO1B1 as well as common genetic variants can lead to increased bioavailability and to adverse reactions, ultimately culminating in rhabdomyolysis.
Schlüsselwörter
Arzneimittelinteraktionen - Arzneimitteltransporter - Arzneimittelmetabolismus - CYP-Enzyme - ABC-Transporter - SLCO1B1
Keywords
drug interactions - drug transport - drug metabolism - CYP enzymes - ABC-transporter - SLCO1B1
Literatur
- 1
Armitage J.
The safety of statins in clinical practice.
Lancet.
2007;
370
(9601)
1781-90
MissingFormLabel
- 2
Bailey D G, Spence J D, Edgar B, Bayliff C D, Arnold J M.
Ethanol enhances the hemodynamic effects
of felodipine.
Clin Invest Med.
1989;
12
(6)
357-62
MissingFormLabel
- 3
Bent S.
Herbal medicine in the United States: review of efficacy, safety,
and regulation: grand rounds at University of California, San Francisco
Medical Center.
J Gen Intern Med.
2008;
23
(6)
854-9
MissingFormLabel
- 4
Bernsdorf A, Giessmann T, Modess C. et al .
Simvastatin does not influence the intestinal
P-glycoprotein and MPR2, and the disposition of talinolol after
chronic medication in healthy subjects genotyped for the ABCB1,
ABCC2 and SLCO1B1 polymorphisms.
Br J Clin Pharmacol.
2006;
61
(4)
440-50
MissingFormLabel
- 5
Dietrich C G, Geier A, Oude Elferink R PJ.
ABC of oral bioavailability: transporters
as gatekeepers in the gut.
Gut.
2003;
52
(12)
1788-95
MissingFormLabel
- 6
Drescher S, Glaeser H, Mürdter T. et al .
P-glycoprotein-mediated intestinal and
biliary digoxin transport in humans.
Clin Pharmacol Ther.
2003;
73
(3)
223-31
MissingFormLabel
- 7
Dresser G K, Schwarz U I, Wilkinson G R, Kim R B.
Coordinate
induction of both cytochrome P4503A and MDR1 by St John’s
wort in healthy subjects.
Clin Pharmacol Ther.
2003;
73
(1)
41-50
MissingFormLabel
- 8
Dürr D, Stieger B, Kullak-Ublick G A. et al .
St John’s Wort
induces intestinal P-glycoprotein/MDR1 and intestinal and
hepatic CYP3A4.
Clin Pharmacol Ther.
2000;
68
(6)
598-604
MissingFormLabel
- 9
Fromm M F, Kauffmann H M, Fritz P. et al .
The effect of rifampin treatment on intestinal
expression of human MRP transporters.
Am J Pathol.
2000;
157
(5)
1575-80
MissingFormLabel
- 10
Fromm M F, Kim R B, Stein C M, Wilkinson G R, Roden D M.
Inhibition of P-glycoprotein-mediated
drug transport: A unifying mechanism to explain the interaction
between digoxin and quinidine.
Circulation.
1999;
99
(4)
552-7
MissingFormLabel
- 11
Geick A, Eichelbaum M, Burk O.
Nuclear receptor response elements mediate induction of intestinal
MDR1 by rifampin.
J Biol Chem.
2001;
276
(18)
14581-7
MissingFormLabel
- 12
Giessmann T, May K, Modess C. et
al .
Carbamazepine regulates intestinal P-glycoprotein
and multidrug resistance protein MRP2 and influences disposition
of talinolol in humans.
Clin Pharmacol Ther.
2004;
76
(3)
192-200
MissingFormLabel
- 13
Glaeser H, Bailey D G, Dresser G K. et al .
Intestinal drug transporter
expression and the impact of grapefruit juice in humans.
Clin
Pharmacol Ther.
2007;
81
(3)
362-70
MissingFormLabel
- 14
Greiner B, Eichelbaum M, Fritz P. et al .
The role of intestinal P-glycoprotein in
the interaction of digoxin and rifampin.
J Clin Invest.
1999;
104
(2)
147-53
MissingFormLabel
- 15
Hall S D, Wang Z, Huang S. et
al .
The interaction between St John’s wort
and an oral contraceptive.
Clin Pharmacol Ther.
2003;
74
(6)
525-35
MissingFormLabel
- 16
Ho R H, Kim R B.
Transporters and
drug therapy: implications for drug disposition and disease.
Clin
Pharmacol Ther.
2005;
78
(3)
260-77
MissingFormLabel
- 17
Kirby B J, Unadkat J D.
Grapefruit
juice, a glass full of drug interactions?.
Clin Pharmacol
Ther.
2007;
81
(5)
631-3
MissingFormLabel
- 18
Kivistö K T, Niemi M, Fromm M F.
Functional interaction of intestinal CYP3A4
and P-glycoprotein.
Fundam Clin Pharmacol.
2004;
18
(6)
621-6
MissingFormLabel
- 19
König J, Seithel A, Gradhand U, Fromm M F.
Pharmacogenomics
of human OATP transporters.
Naunyn Schmiedebergs Arch
Pharmacol.
2006;
372
(6)
432-43
MissingFormLabel
- 20
Leahey E B, Reiffel J A, Drusin R E. et al .
Interaction between quinidine
and digoxin.
JAMA.
1978;
240
(6)
533-4
MissingFormLabel
- 21
Linton K J.
Structure and function of ABC transporters.
Physiology.
2007;
22
122-30
MissingFormLabel
- 22
Mai I, Krüger H, Budde K. et al .
Hazardous pharmacokinetic interaction of
Saint John’s wort (Hypericum perforatum) with the immunosuppressant
cyclosporin.
Int J Clin Pharmacol Ther.
2000;
38
(10)
500-2
MissingFormLabel
- 23
Marchetti S, Mazzanti R, Beijnen J H, Schellens J HM.
Concise
review: Clinical relevance of drug drug and herb drug interactions
mediated by the ABC transporter ABCB1 (MDR1, P-glycoprotein).
Oncologist.
2007;
12
(8)
927-41
MissingFormLabel
- 24
Marcoff L, Thompson P D.
The role
of coenzyme Q10 in statin-associated myopathy: a systematic review.
J Am Coll Cardiol.
2007;
49
(23)
2231-7
MissingFormLabel
- 25
Nebert D W, Russell D W.
Clinical importance
of the cytochromes P450.
Lancet.
2002;
360
(9340)
1155-62
MissingFormLabel
- 26
Ray W A, Murray K T, Meredith S. et al .
Oral erythromycin and the risk of sudden
death from cardiac causes.
N Engl J Med.
2004;
351
(11)
1089-96
MissingFormLabel
- 27
Roden D M.
Drug-induced prolongation of the QT interval.
N Engl
J Med.
2004;
350
(10)
1013-22
MissingFormLabel
- 28
Schwarz U I, Büschel B, Kirch W.
Unwanted pregnancy on self-medication with St John’s
wort despite hormonal contraception.
Br J Clin Pharmacol.
2003;
55
(1)
112-3
MissingFormLabel
- 29
The SEARCH Collaborative
Group .
SLCO1B1 variants and statin-induced myopathy – A
Genomewide Study.
N Engl J Med.
2008;
359
(8)
789-99
MissingFormLabel
- 30
Thompson P D, Clarkson P, Karas R H.
Statin-associated myopathy.
JAMA.
2003;
289
(13)
1681-90
MissingFormLabel
- 31
Wang Z, Hamman M A, Huang S, Lesko L J, Hall S D.
Effect of St John’s wort on the
pharmacokinetics of fexofenadine.
Clin Pharmacol Ther.
2002;
71
(6)
414-20
MissingFormLabel
- 32
Westphal K, Weinbrenner A, Giessmann T. et al .
Oral bioavailability of digoxin is enhanced
by talinolol: evidence for involvement of intestinal P-glycoprotein.
Clin Pharmacol Ther.
2000;
68
(1)
6-12
MissingFormLabel
- 33
Westphal K, Weinbrenner A, Zschiesche M. et al .
Induction of P-glycoprotein by rifampin
increases intestinal secretion of talinolol in human beings: a new
type of drug/drug interaction.
Clin Pharmacol
Ther.
2000;
68
(4)
345-55
MissingFormLabel
- 34
Xie H, Kim R B.
St John’s
wort-associated drug interactions: short-term inhibition and long-term
induction?.
Clin Pharmacol Ther.
2005;
78
(1)
19-24
MissingFormLabel
Prof. Dr. Dieter Rosskopf
Institut für Pharmakologie, Ernst-Moritz-Arndt
Universität Greifswald
Friedrich-Loeffler-Str.
23d
D-17485 Greifswald
Phone: 03834/86-5650
Fax: 03834/86-5651
Email: dieter.rosskopf@uni-greifswald.de
Email: pharmako@uni-greifswald.de