Synlett 2009(7): 1167-1171  
DOI: 10.1055/s-0028-1088151
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Zirconium-Catalyzed Intermolecular Hydroamination of Unactivated Olefins

Lei Yanga, Li-Wen Xu*a,b, Wei Zhoua, Yue-Hua Gaoa, Wei Suna, Chun-Gu Xia*a
a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, and Graduate School of the Chinese Academy of Sciences, Lanzhou 730000, P. R. of China
Fax: +86(931)8277088; e-Mail: lyang@lzb.ac.cn; e-Mail: cgxia@lzb.ac.cn;
b Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 310012, P. R. of China
Further Information

Publication History

Received 3 November 2008
Publication Date:
26 March 2009 (online)

Abstract

Highly efficient hydroamination reactions of sulfon­amides, carboxamides, and carbamates with unactivated olefins catalyzed by simple and inexpensive zirconium salts under mild reaction conditions were presented for the practical preparation of various amines. These processes gave good to excellent yields of the addition products in Markovnikov addition fashion.

    References and Notes

  • For selected recent reviews, see:
  • 1a Müller TE. Beller M. Chem. Rev.  1998,  98:  675 
  • 1b Roesky PW. Müller TE. Angew. Chem. Int. Ed.  2003,  42:  2708 
  • 1c Bystschkov I. Doye S. Eur. J. Org. Chem.  2003,  935 
  • 1d Hultzsch KC. Adv. Synth. Catal.  2005,  347:  367 
  • 1e Hazari N. Mountford P. Acc. Chem. Res.  2005,  38:  839 
  • 2a Pohlki F. Doye S. Chem. Soc. Rev.  2003,  32:  104 ; and references therein
  • 2b Hartwig JF. Pure Appl. Chem.  2004,  76:  507 
  • 2c Severin R. Doye S. Chem. Soc. Rev.  2007,  36:  1407 
  • Representative examples in the catalytic hydroamination. For lanthanide complexes, see:
  • 3a Kim YK. Livinghouse T. Horino Y. J. Am. Chem. Soc.  2003,  125:  9560 
  • 3b Kim H. Livinghouse T. Shim JH. Lee SG. Lee PH. Adv. Synth. Catal.  2006,  348:  701 ; and references cited therein
  • Alkali metals:
  • 3c Ichikawa J. Lapointe G. Iwai Y. Chem. Commun.  2007,  2698 
  • Iridium:
  • 3d Dorta R. Egli P. Zürcher F. Togni A. J. Am. Chem. Soc.  1997,  119:  10857 
  • 3e Zhao J. Goldman AS. Hartwig JF. Science  2005,  307:  1080 
  • Rhodium:
  • 3f Takemiya A. Hartwig JF. J. Am. Chem. Soc.  2006,  128:  6042 
  • 3g Beller M. Thiel OR. Trauthwein H. Hartung CG. Chem. Eur. J.  2000,  6:  2513 
  • 3h Utsunomiya M. Kuwano R. Kawatsura M. Hartwig JF. J. Am. Chem. Soc.  2003,  125:  5608 
  • Nickel:
  • 3i Pawlas J. Nakao Y. Kawatsura M. Hartwig JF. J. Am. Chem. Soc.  2002,  124:  3669 
  • 3j Fadini L. Togni A. Chem. Commun.  2003,  30 
  • Palladium:
  • 3k Minami T. Okamoto H. Ikeda S. Tanaka R. Ozawa F. Yoshifuji M. Angew. Chem. Int. Ed.  2001,  40:  4501 
  • 3l Utsunomiya M. Hartwig JF. J. Am. Chem. Soc.  2003,  125:  14286 
  • Platinum:
  • 3m Brunet JJ. Chu NC. Rodriguez-Zubiri M. Eur. J. Inorg. Chem.  2007,  4711 
  • Gold:
  • 3n Nishina N. Yamamoto Y. Angew. Chem. Int. Ed.  2006,  45:  3314 
  • 3o Han X. Widenhoefer RA. Angew. Chem. Int. Ed.  2006,  45:  1747 
  • For a review, see:
  • 3p Widenhoefer RA. Han XQ. Eur. J. Org. Chem.  2006,  4555 
  • Ruthenium:
  • 3q Utsunomiya M. Hartwig JF. J. Am. Chem. Soc.  2004,  126:  2702 
  • 3r Takaya J. Hartwig JF. J. Am. Chem. Soc.  2005,  127:  5756 
  • Main-group metals:
  • 3s Lauterwasser F. Hayes PG. Bräse S. Piers WE. Schafer LL. Organometallics  2004,  23:  2234 
  • 3t Crimmin MR. Casely IJ. Hill MS. J. Am. Chem. Soc.  2005,  127:  2042 
  • 3u Wei H. Qian GM. Xia YZ. Li K. Li YH. Li W. Eur. J. Org. Chem.  2007,  4471 
  • Brønsted acids:
  • 4a Schlummer B. Hartwig JF. Org. Lett.  2002,  4:  1471 
  • 4b Anderson LL. Arnold J. Bergman RG. J. Am. Chem. Soc.  2005,  127:  14542 
  • 4c Rosenfeld DC. Shekhar S. Takemiya A. Utsunomiya M. Hartwig JF. Org. Lett.  2006,  8:  4179 
  • 4d Marcseková I. Doye S. Synthesis  2007,  145 
  • 4e Jazzar R. Dewhurst RD. Bourg JB. Donnadieu B. Canac Y. Bertrand G. Angew. Chem. Int. Ed.  2007,  46:  2899 
  • 4f Yang L. Xu LW. Xia CG. Tetrahedron Lett.  2008,  49:  2882 
  • Recent representative progress:
  • 5a LaLonde RL. Sherry BD. Kang EJ. Toste FD. J. Am. Chem. Soc.  2007,  129:  2452 
  • 5b Wood MC. Leitch DC. Yeung CS. Kozak JA. Schafer LL. Angew. Chem. Int. Ed.  2007,  46:  354 
  • 5c Guin J. Mück-Lichtenfeld C. Grimme S. Studer A. J. Am. Chem. Soc.  2007,  129:  4498 
  • 5d Nishina N. Yamamoto Y. Synlett  2007,  1767 
  • 5e Horrillo-Martinez P. Hultzsch KC. Gil A. Branchadell V. Eur. J. Org. Chem.  2007,  3311 
  • 5f Yin Y. Ma W. Chai Z. Zhao G. J. Org. Chem.  2007,  5731 
  • 5g Lingaiah N. Babu NS. Reddy KM. Prasad PSS. Suryanarayana I. Chem. Commun.  2007,  278 
  • 5h For a review, see: Chemler SR. Fuller PH. Chem. Soc. Rev.  2007,  36:  1153 
  • 6 Ryu JS. Li GY. Marks TJ. J. Am. Chem. Soc.  2003,  125:  12584 
  • 7a Qian H. Widenhoefer RA. Org. Lett.  2005,  7:  2635 
  • 7b Karshtedt D. Bell AT. Tilley TD. J. Am. Chem. Soc.  2005,  127:  12640 
  • 8a Zhang JL. Yang CG. He C. J. Am. Chem. Soc.  2006,  128:  1798 
  • 8b Liu XY. Li C. Che CM. Org. Lett.  2006,  8:  2707 
  • 8c Bender CF. Widenhoefer RA. Org. Lett.  2006,  8:  5303 
  • 8d Brouwer C. He C. Angew. Chem. Int. Ed.  2006,  45:  1744 
  • 9 Taylor JG. Whittall N. Hii KK. Org. Lett.  2006,  8:  3561 
  • 10a Huang JM. Wong CM. Xu FX. Loh TP. Tetrahedron Lett.  2007,  48:  3375 
  • 10b Michaux J. Terrasson V. Marque S. Wehbe J. Prim D. Campagne JM. Eur. J. Org. Chem.  2007,  2601 
  • 10c Qin H. Matsunaga S. Yamagiwa N. Shibasaki M. Chem. Asian J.  2007,  2:  150 
  • 10d Qin H. Yamagiwa N. Matsunaga S. Shibasaki M. J. Am. Chem. Soc.  2006,  128:  1611 
  • 11a Talluri SK. Sudalai A. Org. Lett.  2005,  7:  855 
  • 11b Li Z. Zhang J. Brouwer C. Yang CG. Reich NW. He C. Org. Lett.  2006,  8:  4175 
  • 11c Rosenfeld DC. Shekhar S. Takemiya A. Utsunomiya M. Hartwig JF. Org. Lett.  2006,  8:  4179 
  • 11d Motokura K. Nakagiri N. Mori K. Mizugaki K. Ebitani T. Jitsukawa K. Kaneda K. Org. Lett.  2006,  8:  4617 
  • 12a Bytschkov I. Doye S. Eur. J. Org. Chem.  2003,  935 
  • 12b Lee AV. Schafer LL. Eur. J. Org. Chem.  2007,  2243 
  • 12c Shi Y. Ciszewski JT. Odom AL. Organometallics  2001,  20:  3967 
  • 12d Johnson JS. Bergman RG. J. Am. Chem. Soc.  2001,  123:  2923 
  • 12e Ackermann L. Organometallics  2003,  22:  4367 
  • 12f Kim H. Kim YK. Shim JH. Kim M. Han MJ. Livinghouse T. Lee PH. Adv. Synth. Catal.  2006,  348:  2609 
  • 13a Ackermann L. Kaspar LT. Gschrei CJ. Org. Lett.  2004,  6:  2515 
  • 13b Kaspar LT. Benjamin F. Ackermann L. Angew. Chem. Int. Ed.  2005,  44:  5972 
  • 13c Abbiati G. Casoni A. Canevari V. Nava D. Rossi E. Org. Lett.  2006,  8:  4839 
  • 13d Ackermann L. Kaspar LT. J. Org. Chem.  2007,  72:  6149 
  • 13e Ackermann L. Kaspar LT. Althammer A. Org. Biomol. Chem.  2007,  5:  1975 
  • Zr(OTf)4 was prepared according to reported methods:
  • 16a Kobayashi S. Iwamoto S. Nagayama S. Synlett  1997,  1099 
  • 16b Shi M. Yang YH. Xu B. Synlett  2004,  1622 
  • 17 Allylamines are fundamental building blocks in organic chemistry. For a review, see: Johannsen M. Jørgensen KA. Chem. Rev.  1998,  98:  1689 
14

During the preparation of our manuscript, several related papers using other metal salts dealing with the intermolecular hydroamination of styrenes have appeared in the literature, see ref. 10a-c.

15

Typical Procedure for Intermolecular Addition Reactions of Olefins
Into a test tube were placed Zr(OTf)4 (0.05 mmol) and NH2Ts (1 mmol). After the test tube was sealed, it was purged three times with argon, then n-heptane (2 mL) and cyclohexene (2 mmol) were injected. The reaction mixture was heated at 85 ˚C and stirred vigorously for 20 h. After the reaction was completed, the mixture was directly applied to column chromatography using SiO2 (EtOAc-PE, 1:10 to 1:5) to afford a analytically pure product (93% isolated yield). All the compounds are known and NMR or GC-MS data for some representative products are given below.
N -(1-Phenylethyl)benzamide ¹H NMR (400 MHz, CDCl3): δ = 7.77 (d, J = 7.2 Hz, 2 H), 7.50-7.46 (t, 1 H), 7.42-7.35 (m, 6 H), 7.33-7.25 (m, 1 H), 6.44 (br, 1 H), 5.34 (dt, J = 7.2, 7.2 Hz, 1 H), 1.60 (d, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 166.56, 143.08, 134.51, 131.42, 128.70, 128.50, 127.40, 126.89, 126.21, 49.17, 21.68. GC-MS: m/z = 225.
N -[1-(4-Bromophenyl)ethyl]-4-methylbenzenesulfon-amide
¹H NMR (400 MHz, CDCl3): δ = 7.57 (d, J = 8.4 Hz, 2 H), 7.27 (d, J = 8.4 Hz, 2 H,), 7.16 (d, J = 8.0 Hz, 2 H), 6.97 (d, J = 8.0 Hz, 2 H), 5.42 (d, J = 7.2 Hz, 1 H), 4.41 (quint, J = 6.8 Hz, 1 H), 2.39 (s, 3 H), 1.37 (d, J = 6.8 Hz, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 143.32, 140.00, 137.33, 131.43, 129.42, 127.92, 127.00, 121.16, 53.06, 23.35, 21.47. GC-MS: m/z = 354. Cyclohex-2-enyl- p -toluenesulfonamide
¹H NMR (400 MHz, CDCl3): δ = 7.75 (d, J = 7.6 Hz, 2 H), 7.27 (d, J = 8.0 Hz, 2 H), 5.71 (d, J = 10.0 Hz, 1 H), 5.31 (d, J = 10.4 Hz, 1 H), 4.84 (d, J = 8.4 Hz, 1 H), 3.77 (s, 1 H), 2.39 (s, 3 H), 1.94-1.77 (m, 2 H), 1.74-1.61 (m,1 H), 1.57-1.50 (m, 3 H). ¹³C NMR (100 MHz, CDCl3): δ = 143.14, 138.24, 131.39, 129.60, 126.95, 126.91, 48.89, 30.12, 24.38, 21.45, 19.22. GC-MS: m/z = 251.