Synlett 2009(3): 495-499  
DOI: 10.1055/s-0028-1087552
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Efficient and Facile Aryl Transfer to Aldehydes Using ArB(OH)2-GaMe3

Xuefeng Jiaa, Ling Fanga, Aijun Lina, Yi Pana, Chengjian Zhu*a,b
a School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. of China
Fax: +86(25)83594886; e-Mail: cjzhu@nju.edu.cn;
b State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China
Further Information

Publication History

Received 26 August 2008
Publication Date:
21 January 2009 (online)

Abstract

A rapid and efficient procedure for the synthesis of di­arylmethanols has successfully been achieved by the aryl transfer to aldehydes using the ArB(OH)2-GaMe3 combined systems in excellent yields (up to 98%) at room temperature.

    References and Notes

  • 1a Harms AF. Nauta WT. J. Med. Pharm. Chem.  1960,  2:  57 
  • 1b Bolshan Y. Chen C.-Y. Chilenski JR. Gosselin F. Mathre DJ. O’Shea PD. Roy A. Tillyer RD. Org. Lett.  2004,  6:  111 
  • 1c Seto M. Aramaki Y. Imoto H. Akiwa K. Oda T. Kanzaki N. Iizawa Y. Baba M. Shiraishi M. Chem. Pharm. Bull.  2004,  52:  818 
  • For related reviews, see:
  • 1d Bolm C. Hildebrand JP. Muiz K. Hermanns N. Angew. Chem. Int. Ed.  2001,  40:  3284 
  • 1e Schmidt F. Stemmler RT. Rudolph J. Bolm C. Chem. Soc. Rev.  2006,  35:  454 
  • 2a Sakai M. Ueda M. Miyaura N. Angew. Chem. Int. Ed.  1998,  37:  3279 
  • 2b Ueda M. Miyaura N. J. Org. Chem.  2000,  65:  4450 
  • 3a Fürstner A. Krause H. Adv. Synth. Catal.  2001,  343:  343 
  • 3b Son SU. Kim SB. Reingold JA. Carpenter GB. Sweigart DA. J. Am. Chem. Soc.  2005,  127:  12238 
  • 3c Chen JH. Zhang XQ. Feng Q. Luo MM.
    J. Organomet. Chem.  2006,  691:  470 
  • 3d Gois PMP. Trindade AF. Veiros LF. André V. Duarte MT. Afonso CAM. Caddick S. Cloke FGN. Angew. Chem. Int. Ed.  2007,  46:  5750 
  • 4a Yamamoto T. Ohta T. Ito Y. Org. Lett.  2005,  7:  4153 
  • 4b Suzuki K. Arao T. Ishii S. Maeda Y. Kondo K. Aoyama T. Tetrahedron Lett.  2006,  47:  5789 
  • 4c Qin CM. Wu HY. Cheng J. Chen XA. Liu MC. Zhang WW. Su WK. Ding JC. J. Org. Chem.  2007,  72:  4102 
  • 4d He P. Lu Y. Hu Q.-S. Tetrahedron Lett.  2007,  48:  5283 
  • 4e He P. Lu Y. Dong C.-G. Hu Q.-S. Org. Lett.  2007,  9:  343 
  • 4f Lin SH. Lu XY. J. Org. Chem.  2007,  72:  9757 
  • 5a Takahashi G. Shirakawa E. Tsuchimoto T. Kawakami Y. Chem. Commun.  2005,  1459 
  • 5b Arao T. Kondo K. Aoyama T. Tetrahedron Lett.  2007,  48:  4115 
  • 6a Bolm C. Hermanns N. Hildebrand JP. Nuniz K. Angew. Chem. Int. Ed.  2000,  39:  3465 
  • 6b Bolm C. Kesselgruber M. Hermanns N. Hildebrand JP. Angew. Chem. Int. Ed.  2001,  39:  1488 
  • 7a Bolm C. Rudolph J. J. Am. Chem. Soc.  2002,  124:  14850 
  • 7b Rudolph J. Hermanns N. Bolm C. J. Org. Chem.  2004,  69:  3997 
  • 8a Ji J.-X. Wu J. Au-Yeung TT.-L. Yip C.-W. Haynes RK. Chan ASC. J. Org. Chem.  2005,  70:  1093 
  • 8b Braga AL. Lüdtke DS. Schneider PH. Vargas F. Schneider A. Wessjohann LA. Paixão MW. Tetrahedron Lett.  2005,  46:  7827 
  • 8c Braga AL. Lüdtke DS. Vargas F. Paixão MW. Chem. Commun.  2005,  2512 
  • 8d Braga AL. Milani P. Vargas F. Paixão MW. Sehnem JA. Tetrahedron: Asymmetry  2006,  17:  2793 
  • 8e Paixão MW. Godoi M. Rhoden CRB. Westermann B. Wessjohann L. Lüdtke DS. Braga AL. J. Mol. Catal. A: Chem.  2007,  261:  120 
  • 8f Jin M.-J. Sarkar SM. Lee D.-H. Qiu HL. Org. Lett.  2008,  10:  1235 
  • 8g Jimeno C. Sayalero S. Fjermestad T. Colet G. Maseras F. Pericàs MA. Angew. Chem. Int. Ed.  2008,  47:  1098 
  • 8h Fontes M. Verdaguer X. Solà L. Pericàs MA. Riera A. J. Org. Chem.  2004,  69:  2532 
  • 9a Nishimura Y. Miyake Y. Amemiya R. Yamaguchi M. Org. Lett.  2006,  8:  5077 
  • 9b Nishimura Y. Amemiya R. Yamaguchi M. Tetrahedron Lett.  2006,  47:  1839 
  • 9c Nishimura Y. Shiraishi T. Yamaguchi M. Tetrahedron Lett.  2008,  49:  3492 
  • 10a Zhu CJ. Yuan F. Gu WJ. Pan Y. Chem. Commun.  2003,  692 
  • 10b Yuan F. Zhu CJ. Sun JT. Liu YJ. Pan Y. J. Organomet. Chem.  2003,  682:  102 
  • 11 Dai ZY. Zhu CJ. Yang MH. Zheng YF. Pan Y. Tetrahedron: Asymmetry  2005,  16:  605 
  • 12 Jia XF. Yang HW. Fang L. Zhu CJ. Tetrahedron Lett.  2008,  49:  1370 
13

General Experimental Procedure
The arylboronic acid (0.3 mmol, 1.5 equiv) was dissolved in anhyd toluene (2 mL) in a 20 mL flame-dried Schlenk reaction tube under argon atmosphere. A commercially available 1 M solution of Me3Ga in toluene (0.9 mmol, 4.5 equiv) was added via syringe dropwise, and the resulting mixture was stirred for 2 h at r.t. followed by the addition of aldehyde (0.2 mmol). After completion of the reaction (monitored by TLC), the reaction solution was quenched with H2O (3 mL) and further extracted with EtOAc (3 × 5 mL). The combined organic layer was dried over Na2SO4. Evaporation of the solvent gave the crude product, which was further purified by preparative TLC (PE-EtOAc, 5:1) to give corresponding pure diarylmethanols.

14

The reactivity of nitro-substituted benzaldehyde is in agreement with the experimental results in references 3c, 4d-f, but 4-nitrobenzaldehyde is not reactive in reference 2a.

15

In reference 8g,h, the mechanism of the boron-to-zinc transmetalation has been clarified by theoretical calculations and experimental study. In this process, the mixed zinc species (ArZnEt) is formed.