Synlett 2009(1): 143-146  
DOI: 10.1055/s-0028-1087392
CLUSTER
© Georg Thieme Verlag Stuttgart ˙ New York

Oxidative Cyclization of Sulfamate Esters Using NaOCl - A Metal-Mediated Hoffman-Löffler-Freytag Reaction

David N. Zalatan, J. Du Bois*
Department of Chemistry, Stanford University, Stanford, CA 94305-5080, USA
e-Mail: jdubois@stanford.edu;
Further Information

Publication History

Received 2 September 2008
Publication Date:
12 December 2008 (online)

Abstract

Intramolecular C-H amination with sulfamate esters occurs under the action of dinuclear Rh catalysts and iodine(III) oxidants, and has recently emerged as a powerful tool for synthesis. Insights gained through mechanistic studies of this process suggest that other terminal oxidants, including common halogenating agents such as NaOCl, could function to promote the cyclization reaction. Results described in this report demonstrate that the combination of NaOCl and 3 mol% Rh2(oct)4 is effective in select cases for converting sulfamate substrates to the corresponding [1,2,3]-oxa­thiazinane-2,2-dioxide heterocycles. The mechanism for C-H functionalization, however, is distinct from that induced by hypervalent iodine reagents and likely involves the intermediacy of an N-centered radical.

    References and Notes

  • For general reviews, see:
  • 1a Espino CG. Du Bois J. In Modern Rhodium-Catalyzed Organic Reactions   Evans PA. Wiley-VCH; Weinheim: 2005.  p.379-416  
  • 1b Dauban P. Dodd RH. Synlett  2003,  1571 
  • 1c Halfen JA. Curr. Org. Chem.  2005,  9:  657 
  • 1d Lebel H. Leogane O. Huard K. Lectard S. Pure Appl. Chem.  2006,  78:  363 
  • 1e Li ZG. He C. Eur. J. Org. Chem.  2006,  4313 
  • 1f Davies HML. Manning JR. Nature (London)  2008,  451:  417 
  • 1g Díaz-Requejo MM. Pérez PJ. Chem. Rev.  2008,  108:  3379 
  • 2a Müller P. Baud C. Nägeli I. J. Phys. Org. Chem.  1998,  11:  597 
  • 2b Fiori KW. Du Bois J. J. Am. Chem. Soc.   2007,  129:  652 
  • 2c Fiori KW. Espino CG. Brodski BH. Du Bois J. Tetrahedron,  in press 
  • 3 Lin X. Zhao C. Che C.-M. Ke Z. Phillips DL. Chem. Asian J.  2007,  2:  1101 
  • 4a Vyas R. Chanda BM. Bedekar AV. Tetrahedron Lett.  1998,  39:  4715 
  • 4b Albone DP. Aujla PS. Taylor PC. J. Org. Chem.  1998,  63:  9569 
  • 4c Simkhovich L. Gross Z. Tetrahedron Lett.  2001,  42:  8089 
  • 4d Chanda BM. Vyas R. Bedekar AV. J. Org. Chem.  2001,  66:  30 
  • 4e Gullick J. Taylor S. McMorn P. Bethell D. Bulman Page PC. Hancock FE. King F. Hutchings G. J. Mol. Catal. A.  2002,  180:  85 
  • 4f Kumar GDK. Baskaran S. Chem. Commun.  2004,  1026 
  • 4g Vyas R. Gao G.-Y. Harden JD. Zhang XP. Org. Lett.  2004,  6:  1907 
  • 4h Albone DP. Challenger S. Derrick AM. Fillery SM. Irwin JL. Parsons CM. Takada H. Taylor PC. Wilson DJ. Org. Biomol. Chem.  2005,  3:  107 
  • 4i Fructos MR. Trofimenko S. Díaz-Requejo MM. Pérez PJ. J. Am. Chem. Soc.  2006,  128:  11784 
  • 4j Bhuyan R. Nicholas KM. Org. Lett.  2007,  9:  3957 
  • 4k Harden JD. Ruppel JV. Gao G.-Y. Zhang XP. Chem. Commun.  2007,  4644 
  • 4l Antunes AMM. Bonifácio VDB. Nascimento SCC. Lobo AM. Branco PS. Prabhakar S. Tetrahedron  2007,  63:  7009 
  • N-Arylsulfonyloxycarbamates have been shown to be effective for C-H and π-bond amination, see:
  • 5a Barani M. Fioravanti S. Pellacani L. Tardella PA. Tetrahedron  1994,  50:  11235 
  • 5b Lebel H. Huard K. Lectard S. J. Am. Chem. Soc.  2005,  107:  14198 
  • 5c Lebel H. Huard K. Org. Lett.  2007,  9:  639 
  • 5d Liu R. Herron SR. Fleming SA. J. Org. Chem.  2007,  72:  5587 
  • For Fe- and Cu-catalyzed amination using N-bromosuccin-imide, see:
  • 6a Wang Z. Zhang Y. Hua F. Jiang Y. Zhao Y. Org. Lett.  2008,  10:  1863 
  • 6b Liu X. Zhang Y. Wang L. Fu H. Jiang Y. Zhao Y. J. Org. Chem.  2008,  73:  6207 
  • Amination reactions have been performed with peroxide oxidants. For select examples, see:
  • 7a Kohmura Y. Kawasaki K.-i. Katsuki T. Synlett  1997,  1456 
  • 7b Pelletier G. Powell DA. Org. Lett.  2006,  8:  6031 
  • 7c Thu H.-Y. Yu W.-Y. Che C.-M. J. Am. Chem. Soc.  2006,  128:  9048 
  • 7d Zhang Y. Fu H. Jiang Y. Zhao Y. Org. Lett.  2007,  9:  3813 
  • 10a

    We have found that Rh2(α,α,α′,α′-tetramethyl-1,3-benzenedipropionate)2 [also known as Rh2(esp)2, see ref. 10b] gives results comparable to those of Rh2(oct)4.

  • 10b Espino CG. Fiori KW. Kim M. Du Bois J. J. Am. Chem. Soc.  2004,  126:  15378 
  • 13a Espino CG. Wehn PM. Chow J. Du Bois J. J. Am. Chem. Soc.  2001,  123:  6935 
  • 13b Wehn PM. Lee J. Du Bois J. Org. Lett.  2003,  5:  4823 
  • 14 Espino CG. Du Bois J. Angew. Chem. Int. Ed.  2001,  40:  598 
  • 15a Wolff ME. Chem. Rev.  1963,  63:  55 
  • 15b Mackiewicz P. Furstoss R. Tetrahedron  1978,  34:  3241 
  • 15c For a modern-day variant of the HFL reaction, see: Chen K. Richter JM. Baran PS. J. Am. Chem. Soc.  2008,  130:  7247 
  • In general, reactions of iodoimine derivatives with certain metal catalysts (e.g., complexes of Mn, Fe, Ru, Cu) afford amine derivatives through an apparent C-H abstraction-radical rebound-type mechanism. For examples, see ref. 1 and:
  • 17a Mahy J.-P. Bedi G. Battioni P. Mansuy D. Tetrahedron Lett.  1988,  29:  1927 
  • 17b Mahy J.-P. Bedi G. Battioni P. Mansuy D. New J. Chem.  1989,  13:  651 
8

Tentative structural assignment of 2 is based on ¹H NMR analysis of the reaction mixture.

9

The rather modest isolated yield of this material is likely due to product overoxidation. Analysis of the ¹H NMR spectrum of the unpurified reaction mixture is quite clean, however. We assume that product(s) of overoxidation are removed in the aqueous workup.

11

The overall efficiency of the reaction is reduced when NaBr is excluded.

12

Optimized Reaction Protocol
To a biphasic solution of CH2Cl2 (2.5 mL) and sat. Na2HPO4 (2.5 mL, pH ca. 9) was added sequentially sulfamate (0.25 mmol), Rh2(oct)4 (6 mg, 7.5 µmol, 0.03 equiv), and NaBr (77 mg, 0.75 mmol, 3.0 equiv). The reaction flask was wrapped in aluminum foil prior to the dropwise addition of 1.6 M aq NaOCl (Acros, 470 µL, 0.75 mmol, 3.0 equiv). The biphasic mixture was stirred for 2 h, following which time the reaction was quenched by the addition of 1.0 mL of 1.0 M aq NaHSO3. The contents were transferred to a separatory funnel with CH2Cl2 (10 mL) and H2O (5 mL). The organic layer was collected and the aqueous layer was extracted with CH2Cl2 (1 × 10 mL). The combined organic fractions were dried over Na2SO4 and concentrated under reduced pressure to a yellow oil. Purification of this material by chromatography on SiO2 (hexanes-EtOAc) afforded the desired oxathiazinane product.

16

Consistent with the proposed mechanism, when N-methyl-3-phenylpropylsulfamate is subjected to the reaction conditions, an oxidized product is formed. This material has been tentatively assigned as N-methyl-3-bromo-3-phenyl-sulfamate.