Synlett 2008(18): 2777-2780  
DOI: 10.1055/s-0028-1083535
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Cross-Metathesis of Chiral N-tert-Butylsulfinyl Homoallylamines: Application to the Enantioselective Synthesis of Naturally Occurring 2,6-cis-Disubstituted Piperidines

José C. González-Gómez, Francisco Foubelo*, Miguel Yus*
Departamento de Química Orgánica, Facultad de Ciencias and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
Fax: +34(965)903549; e-Mail: foubelo@ua.es; e-Mail: yus@ua.es;
Further Information

Publication History

Received 18 July 2008
Publication Date:
15 October 2008 (online)

Abstract

The synthesis of piperidine alkaloids (+)-dihydropinidine (1), (+)-isosolenopsin (2a), (+)-isosolenopsin A (2b), and (2R,6R)-6-methylpipecolic acid (3a) hydrochlorides, based on cross-metathesis of chiral N-tert-butylsulfinyl homoallylamines with methyl vinyl ketone, is presented.

    References and Notes

  • 1 Schneider M. In Alkaloids: Chemical and Biological Perspectives   Vol. 10:  Pelletier SW. Pergamon; Oxford: 1996.  p.55-299  
  • For recent reviews on the stereoselective synthesis of 2,6-dialkylpiperidines, see:
  • 2a Bates RW. Sa-Ei K. Tetrahedron  2002,  58:  5957 
  • 2b Buffat MGP. Tetrahedron  2004,  60:  1701 
  • 3 Attygale AB. Xu SC. McCormick KD. Meinwald J. Blankespoor CL. Eismer T. Tetrahedron  1993,  49:  9333 
  • 4a For leading references on the enantioselective synthesis of dihydropinidine, see: Ciblat S. Besse P. Papastergiou V. Veschambre H. Canet JL. Troin Y. Tetrahedron: Asymmetry  2000,  11:  2221 ; and references therein
  • 4b To verify the NMR data, see: Wang X. Dong Y. Sun J. Xu X. Li R. Hu Y. J. Org. Chem.  2005,  70:  1897 
  • 5a For the absolute configuration of isosolenopsins, see: Leclerq S. Thirionet I. Broeders F. Daloze D. Vander Meer R. Braeekman JC. Tetrahedron  1994,  50:  8465 
  • 5b

    For leading references on the enantioselective synthesis of isosolenopsins, see ref. 4.

  • For leading references on cis-6-methylpipecolic acid, see:
  • 6a Swarbrick ME. Gosselin F. Lubell WD. J. Org. Chem.  1999,  64:  1993 
  • 6b Davis FA. Zhang H. Lee SH. Org. Lett.  2001,  3:  759 
  • 6c Troin Y. Carbonnel S. Heterocycles  2002,  57:  1807 
  • 7a Deslongchamps P. Stereoelectronic Effects in Organic Chemistry   Pergamon; New York: 1983.  Chap. 6.
  • 7b Stevens RV. Acc. Chem. Res.  1984,  17:  289 ; and references therein
  • 7c Ryckman DM. Stevens RV.
    J. Org. Chem.  1987,  52:  4274 
  • 8a Randl S. Blechert S. J. Org. Chem.  2003,  68:  8879 
  • 8b Randl S. Blechert S. Tetrahedron Lett.  2004,  45:  1167 
  • 8c Gebauer J. Blechert S. Synlett  2005,  2826 
  • 8d Dewi-Wülfing P. Gebauer J. Blechert S. Synlett  2006,  487 
  • For recent reviews, see:
  • 9a Connon SJ. Blechert S. Angew. Chem. Int. Ed.  2003,  42:  1900 
  • 9b Hoveyda AH. Gillingham DG. Van Veldhuizen JJ. Kataoka O. Garber SB. Kingsburry JS. Harrity JPA. Org. Biomol. Chem.  2004,  2:  8 
  • 10a For ring opening of chiral oxiranes with vinylmagnesium bromide, see: Fürstner A. Thiel OR. Kindler N. Bartkowska B. J. Org. Chem.  2000,  65:  7990 
  • 10b For synthesis of chiral homoallylamines using this approach, see: Randl S. Blechert S. J. Org. Chem.  2003,  68:  8879 
  • 10c

    See also ref. 8d.

  • 11 Foubelo F. Yus M. Tetrahedron: Asymmetry  2004,  15:  3823 
  • 12a Davis FA. Wu Y. Org. Lett.  2004,  6:  1269 
  • 12b Dirscherl G. Rooshenas P. Schreiner PR. Lamaty F. König B. Tetrahedron  2008,  64:  3005 
  • For selected reviews, see:
  • 13a Ellman JA. Owens TD. Tang TP. Acc. Chem. Res.  2002,  35:  984 
  • 13b Ellman JA. Pure Appl. Chem.  2003,  75:  39 
  • 13c Zhou P. Chen BC. Davis FA. Tetrahedron  2004,  60:  8003 
  • 14 N-tert-Butanesulfinylimines are readily prepared from aldehydes and N-tert-butanesulfinamides (Ss and Rs are commercially available in >99% ee), following the procedure reported in: Liu G. Cogan DA. Owens TD. Tang TP. Ellman JA. J. Org. Chem.  1999,  64:  1278 
  • Allylation of tert-butylsulfinimines has also been reported by other authors using different metals and conditions. For selected examples, see:
  • 15a Cogan DA. Liu G.-C. Ellman JA. Tetrahedron  1999,  55:  8883 
  • 15b Li S.-W. Batey RA. Chem. Commun.  2004,  1382 
  • 15c Kolodney G. Sklute G. Perrone S. Knochel P. Marek I. Angew. Chem. Int. Ed.  2007,  46:  9291 
  • Poisoning of Pd and Pt catalysts is well documented. See for instance:
  • 17a Bartholomew CH. Agarwal PK. Katzer JR. Adv. Catal.  1982,  31:  135 
  • 17b Barbier J. Lamy-Pitara E. Marecot P. Boitiaux JP. Cosyns J. Verna F. Adv. Catal.  1990,  37:  279 
  • 20 The procedure was adapted from: Larcheveque M. Haddad M. Tetrahedron: Asymmetry  1999,  10:  4231 
  • For selected examples, see:
  • 21a Mannaioni G. Alesiani M. Carla V. Natalini B. Marinozi M. Pelliciari R. Moroni F. Eur. J. Pharmacol.  1994,  251:  201 
  • 21b Skiles JW. Giannousis PP. Fales KR. Bioorg. Med. Chem. Lett.  1996,  6:  963 
  • 21c Ornstein PL. Schoepp DD. Arnold MB. Jones ND. Deeter JB. Lodge D. Leander JD. J. Med. Chem.  1992,  35:  3111 
  • 21d For a recent review concerning pipecolic acids, see: Kadouri-Puchot C. Comesse S. Amino Acids  2005,  29:  101 
16

Preparation of Compound 6c: A solution of amine 5c (165 mg, 0.50 mmol), methyl vinyl ketone (140 mL, 1.65 mmol) and Hoveyda-Blechert ruthenium catalyst (31 mg, 0.05 mmol) in anhyd CH2Cl2 (10 mL) was stirred for 60 h at
45 ˚C. The solvent was evaporated and the residue was purified by flash chromatography (silica gel, hexane-EtOAc) to give the title compound (137 mg, 0.37 mmol) as a pale brown oil; [α]D ²8 +20.0 (c 0.32, CHCl3). IR (neat): 3226, 1673, 1626 cm. ¹H NMR (300 MHz, CDCl3):
δ = 6.83 (dt, J = 16.0, 7.5 Hz, 1 H), 6.15 (d, J = 16.0 Hz, 1 H), 3.33-3.42 (m, 1 H), 3.09 (d, J = 7.7 Hz, 1 H), 2.51-2.56 (m, 2 H), 2.27 (s, 3 H), 1.22-1.55 (m, 20 H), 1.21 (s, 9 H), 0.88 (t, J = 7.6 Hz, 3 H). ¹³C NMR (75 MHz, CDCl3):
δ = 198.3, 143.5 (CH), 133.9 (CH), 56.1, 56.0 (CH), 39.5 (CH2), 35.7 (CH2), 31.8 (CH2), 29.4 (CH2), 29.25 (CH2), 29.2 (CH2), 27.0 (Me), 25.6 (CH2), 22.55 (CH2), 22.5 (Me), 14.0 (Me). LRMS (MALDI): m/z = 372.281 [M + H], 394.286 [M + Na].

18

General Procedure for the Reductive Amination of Cross-Metathesis Products: A flame-dried flask was cooled under a stream of argon and charged with Wilkinson’s catalyst (50 mg, 0.05 mmol) and a solution of the corresponding enone (1.10 mmol) in EtOH (5.0 mL). A balloon of H2 was connected to the flask and the reaction mixture was stirred at r.t. overnight. After changing the solvent to n-hexane-t-BuOMe (1:1), the resulting suspension was filtered through a short pad of Celite to remove the solid Ph3PO. The organic solution was concentrated (15 Torr) and the crude aminoketone was dissolved in MeOH (3 mL) and 4 M HCl in dioxane (1.5 mL) was added at 0 ˚C. After 1 h stirring at the same temperature, solvents were evaporated under vacuum. The residue was dissolved in citrate-phosphate buffer (1.5 mL) and THF (1.5 mL), adjusting the pH to 5 with 1 M NaOH if necessary. To this solution was added NaCNBH3 (50 mg, 0.80 mmol) at
0 ˚C and the mixture was stirred for 3 h at 23 ˚C. The reaction mixture was basified with 15% NaOH (10 mL) and extracted with CH2Cl2 (3 × 20 mL). The organic layer was washed with brine, dried over K2CO3 and concentrated (15 Torr) to afford the desired piperidines as pale yellow oils. The corresponding hydrochlorides were crystallized using ethereal HCl and recrystallization from EtOH-EtOAc (1:3) afforded pure products (cis/trans >99:1), having spectral data identical with those reported in literature.4b

19

Specific rotations obtained for hydrochlorides 1, 2a, and 2b:
(+)-Dihydropinidine hydrochloride: [α]D ²0 +14.2 (c 0.66, EtOH) {Lit.4a [α]D ²0 +14.1 (c 1.0, EtOH)}.
(+)-Isosolenopsin hydrochloride: [α]D ²0 +10.2 (c 0.93, CHCl3) {Lit.4a [α]D ²0 +11.1 (c 0.92, CHCl3)\.
(+)-Isosolenopsin A hydrochloride: [α]D ²0 +11.0 (c 1.00, CHCl3) {Lit.4a [α]D ²0 +10.0 (c 1.17, CHCl3)}.