Synthesis 2008(24): 3981-3987  
DOI: 10.1055/s-0028-1083225
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Palladium-Catalyzed Indole and Azaindole Synthesis by Direct Annulation of Electron-Poor o-Chloroanilines and o-Chloroaminopyridines with Aldehydes

Zhengren Xu, Weimin Hu, Fengying Zhang, Qingjiang Li, Zhiyao Lü, Lihe Zhang, Yanxing Jia*
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, P. R. of China
Fax: +86(10)82805166; e-Mail: yxjia@bjmu.edu.cn;
Further Information

Publication History

Received 4 June 2008
Publication Date:
01 December 2008 (online)

Abstract

A practical process for the synthesis of 2-unsubstituted indoles and azaindoles has been developed by the palladium-catalyzed direct annulation of electron-poor o-chloro/bromoanilines and o-chloroaminopyridines with aldehydes. Coupled with the previous results of Jia and Zhu, this allows rapid access to a variety of 2-unsubstituted indoles and azaindoles starting from simple and easily accessible precursors.

    References

  • For recent reviews on indole-containing natural products, see:
  • 1a Somei M. Yamada F. Nat. Prod. Rep.  2005,  22:  73 
  • 1b Kawasaki T. Higuchi K. Nat. Prod. Rep.  2005,  22:  761 
  • 1c Higuchi K. Kawasaki T. Nat. Prod. Rep.  2007,  24:  843 ; and references cited therein
  • For recent reviews on the construction of the indole ring, see:
  • 2a Gribble GW. J. Chem. Soc., Perkin Trans. 1  2000,  1045 
  • 2b Humphrey GR. Kuethe JT. Chem. Rev.  2006,  106:  2875 ; and references cited therein
  • For recent reports on indole synthesis without a palladium catalyst, see:
  • 3a Tokuyama H. Yamashita T. Reding MT. Kaburagi Y. Fukuyama T. J. Am. Chem. Soc.  1999,  121:  3791 
  • 3b Du Y. Liu R. Linn G. Zhao K. Org. Lett.  2006,  8:  5919 
  • 3c Liu F. Ma D. J. Org. Chem.  2007,  72:  4844 
  • 3d Yin Y. Ma W. Chai Z. Zhao G. J. Org. Chem.  2007,  72:  5731 
  • 3e Chen Y. Xie X. Ma D. J. Org. Chem.  2007,  72:  9329 
  • 3f Cariou K. Ronan B. Mignani S. Fensterbank L. Malacria M. Angew. Chem. Int. Ed.  2007,  46:  1881 
  • 3g Trost BM. McClory A. Angew. Chem. Int. Ed.  2007,  46:  2074 
  • 3h Nakamura I. Yamagishi U. Song D. Konta S. Yamamoto Y. Angew. Chem. Int. Ed.  2007,  46:  2284 
  • 3i Ohno H. Ohta Y. Oishi S. Fujii N. Angew. Chem. Int. Ed.  2007,  46:  2295 
  • 3j Li G. Huang X. Zhang L. Angew. Chem. Int. Ed.  2008,  47:  346 
  • 3k Alex K. Tillack A. Schwarz N. Beller M. Angew. Chem. Int. Ed.  2008,  47:  2304 
  • For recent reviews on palladium-catalyzed synthesis of indoles, see:
  • 4a Cacchi S. Fabrizi G. Chem. Rev.  2005,  105:  2873 
  • 4b Zeni G. Larock RC. Chem. Rev.  2006,  106:  4644 
  • 4c Ackermann L. Synlett  2007,  507 
  • For reports on palladium-catalyzed indole synthesis, see:
  • 5a Mori M. Chiba K. Ban Y. Tetrahedron Lett.  1977,  1037 
  • 5b Larock RC. Yum EK. J. Am. Chem. Soc.  1991,  113:  6689 
  • 5c Larock RC. Yum EK. Refvik MD. J. Org. Chem.  1998,  63:  7652 
  • 5d Ragaini F. Rapetti A. Visentin E. Monzani M. Caselli A. Cenini S. J. Org. Chem.  2006,  71:  3748 
  • 5e Zhao J. Larock RC. J. Org. Chem.  2006,  71:  5340 
  • 5f Nagamochi M. Fang Y.-Q. Lautens M. Org. Lett.  2007,  9:  2955 
  • 5g Fang Y.-Q. Lautens M. J. Org. Chem.  2008,  73:  538 
  • 5h Leogane O. Lebel H. Angew. Chem. Int. Ed.  2008,  47:  350 
  • 5i Jensen T. Pedersen H. Bang-Andersen B. Madsen R. Jørgensen M. Angew. Chem. Int. Ed.  2008,  47:  888 
  • 5j Ackermann L. Sandmann R. Villar A. Kaspar LT. Tetrahedron  2008,  64:  769 
  • 6a Chen C.-Y. Lieberman DR. Larsen RD. Verhoeven TR. Reider PJ. J. Org. Chem.  1997,  62:  2676 
  • 6b From o-chloroaniline, see: Nazaré M. Schneider C. Lindenschmidt A. Will DW. Angew. Chem. Int. Ed.  2004,  43:  4526 
  • 7a Jia Y. Zhu J. Synlett  2005,  2469 
  • 7b Jia Y. Bois-Choussy M. Zhu J. Org. Lett.  2007,  9:  2401 
  • 7c Jia Y. Bois-Choussy M. Zhu J. Angew. Chem. Int. Ed.  2008,  47:  4167 
  • 7d Velthuisen EJ. Danishefsky SJ. J. Am. Chem. Soc.  2007,  129:  10640 
  • For reviews of palladium-catalyzed cross-coupling reactions of aryl chlorides, see:
  • 8a Littke AF. Fu GC. Angew. Chem. Int. Ed.  2002,  41:  4176 
  • 8b Fu GC. J. Org. Chem.  2004,  69:  3245 
  • 9a Jia Y. Zhu J. J. Org. Chem.  2006,  71:  7826 
  • 9b Martín R. Buchwald SL. Angew. Chem. Int. Ed.  2007,  46:  7236 
  • 10a Gooßen LJ. Ferwanah A.-RS. Synlett  2000,  1801 
  • 10b Yamanoi Y. J. Org. Chem.  2005,  70:  9607 
  • 10c McNeill E. Barder TE. Buchwald SL. Org. Lett.  2007,  9:  3785 
  • 10d Solé D. Serrano O. J. Org. Chem.  2008,  73:  2476 
  • For recent reviews on azaindole synthesis, see:
  • 12a Popowycz F. Routier S. Joseph B. Mérour J.-Y. Tetrahedron  2007,  63:  1031 
  • 12b Popowycz F. Mérour J.-Y. Joseph B. Tetrahedron  2007,  63:  8689 
  • 12c Song JJ. Reeves JT. Gallou F. Tan Z. Yee NK. Senanayake CH. Chem. Soc. Rev.  2007,  36:  1120 
  • For recent reports on azaindole synthesis, see:
  • 13a McLaughlin M. Palucki M. Davies IW. Org. Lett.  2006,  8:  3307 
  • 13b Zheng X. Kerr MA. Org. Lett.  2006,  8:  3777 
  • 13c Schirok H. J. Org. Chem.  2006,  71:  5538 
  • 13d Fang Y.-Q. Yuen J. Lautens M. J. Org. Chem.  2007,  72:  5152 
  • 14a Roberts BA. Strauss CR. Acc. Chem. Res.  2005,  38:  653 
  • 14b Lachance N. April M. Joly M.-A. Synthesis  2005,  2571 
11

Reaction of o-chloroaniline with phenylacetaldehyde (1.0 equiv or 3.0 equiv) gave the expected indole in 55 and 70% yield, respectively. Reaction of 2-chloro-5-methoxyaniline with methyl (S)-2-N,N-di-tert-butoxycarbonyl-5-oxo­-pentanoate (1.0 equiv or 3.0 equiv) gave the 6-methoxy-tryptophan derivative in 21 and 25% yield, respectively. Reaction of 2-chloro-5-methylaniline with phenylacet-aldehyde (1.0 equiv or 3.0 equiv) gave the 5-methyl-3-phenyl-1H-indole in 56 and 67% yield, respectively. ¹H NMR (300 MHz, CDCl3): δ = 8.08 (br s, 1 H), 7.77 (s, 1 H), 7.70 (dd, J = 1.2, 7.4 Hz, 2 H), 7.49 (t, J = 7.4 Hz, 2 H), 7.35-7.31 (m, 3 H), 7.10 (d, J = 8.4 Hz, 1 H), 2.52 (s, 3 H). ¹³C NMR (75 MHz, CDCl3): δ = 135.7, 134.9, 129.6, 128.7, 127.5, 125.9, 125.8, 124.0, 121.9, 119.4, 117.8, 111.0, 21.6.