Synthesis 2008(20): 3237-3244  
DOI: 10.1055/s-0028-1083154
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Simple and Efficient Synthesis of Racemic Substituted Mandelic Acid Esters from Nonactivated Arenes and Ethyl Glyoxylate

Jacek Kwiatkowskia, Jakub Majera, Piotr Kwiatkowskia, Janusz Jurczak*a,b
a Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
b Department of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
Fax: +48(22)6326681; e-Mail: jurczak@icho.edu.pl;
Further Information

Publication History

Received 24 March 2008
Publication Date:
25 September 2008 (online)

Abstract

Direct synthesis of racemic aromatic α-hydroxyacetic acid esters via Friedel-Crafts reaction of nonactivated, simple ar­enes with ethyl glyoxylate promoted by SnCl4 or AlCl3 is described. The use of SnCl4 opens a fast access to various alkyl- and aryl-substituted mandelic acids esters at room temperature within two hours in good yield (>80%) and with high regioselectivity. The procedure was successfully employed also for the alkylation of compounds with condensed aromatic rings. Alternative hydroxyalkylations with AlCl3 require longer reaction time and higher temperature to get a good yield.

    References

  • 1 Kang S.-U. Worthy KM. Bindu LK. Zhang M. Yang D. Fisher RJ. Burke TR. J. Med. Chem.  2005,  48:  5369 
  • 2a Fulenmeier A, Quitt P, Volgler K, and Lanz P. inventors; US Patent  3957758. Mandelic acid derivatives as intermediates for preparation of 2,3-dihydrobenzofuran-2-ones - anti-inflammatory agents: 6-Acyl derivatives of aminopenicillanic acid: ; Chem. Abstr. 1976, 85, 123909r
  • 2b Farge D, Moutonnier C, and Messer MN. inventors; Rhone-Poulenc S. A., South African Patent  7003341.  ; Chem. Abstr. 1971, 75, 63596
  • 2c inventors; Ihara Chemical Ind. Co., Japan Kokai Tokkyo Koho  8275948.  ; Chem. Abstr. 1982, 97, 162591
  • 3 Poechlauer P. Skranc W. Wubbolts M. Asymmetric Catalysis on Industrial Scale, In The Large-Scale Biocatalytic Synthesis of Enantiopure Cyanohydrins   Blaster H.-U. Schmidt E. Wiley-VCH; Weinheim: 2004.  p.149-164  
  • 4 Coppola GM. Schuster HF. α-Hydroxy Acids in Enantioselective Syntheses   Wiley-VCH; Weinheim: 1997.  p.137-165  
  • 5 Friedel-Crafts and Related Reactions   Vol. 1-4:  Olah GA. Wiley-Interscience; New York: 1963-1965. 
  • For reviews on enantioselective Friedel-Crafts reaction, see:
  • 6a Jørgensen KA. Synthesis  2003,  1117 
  • 6b Bandini M. Melloni A. Umani-Ronchi A. Angew. Chem. Int. Ed.  2004,  43:  550 
  • Diastereoselective reactions of phenols:
  • 7a Bigi F. Casnati G. Sartori C. Dalprato R. Bortolini R. Tetrahedron: Asymmetry  1990,  1:  861 
  • 7b Bigi F. Bocelli G. Maggi R. Sartori G. J. Org. Chem.  1999,  64:  5004 
  • 8a Nagata W. Okada K. Aoki T. Synth. Commun.  1979,  9:  365 
  • 8b Si Y.-G. Chen J. Li F. Li J.-H. Qin Y.-J. Jiang B. Adv. Synth. Catal.  2006,  348:  898  (also the Friedel-Crafts reaction of phenolate used in the total synthesis of the pesticide cycloprothrin)
  • 9a Shue Y.-K. Carrera GM. Hutchins CW. Garvey DS. Nadzan AM. J. Org. Chem.  1991,  56:  2936 
  • 9b Gathergood N. Zhuang W. Jørgensen KA. J. Am. Chem. Soc.  2000,  122:  12517 
  • 9c Zhang W. Wang PG. J. Org. Chem.  2000,  65:  4732 
  • 9d Zhuang W. Gathergood N. Hazell R. Jørgensen KA. J. Org. Chem.  2001,  66:  1009 
  • 9e Zhuang W. Jørgensen KA. Chem. Commun.  2002,  1336 
  • 9f Prakash GK. Yan P. Török B. Olah GA. Synlett  2003,  527 
  • 9g Ding R. Zhang HB. Chen YJ. Liu L. Wang D. Jun LiC. Synlett  2004,  555 
  • 9h Yuan Y. Wang X. Li X. Ding K. J. Org. Chem.  2004,  69:  146 
  • 9i Kwiatkowski P. Majer J. Chaadaj W. Jurczak J. Org. Lett.  2006,  8:  5045 
  • 9j Zhu C. Yuan C. Lu Y. Synlett  2006,  1221 
  • 9k Soueidan M. Collin J. Gil R. Tetrahedron Lett.  2006,  47:  5467 
  • 9l Zhao J.-L. Liu L. Zhang H.-B. Wu Y.-C. Wang D. Chen YJ. Tetrahedron Lett.  2006,  47:  2511 
  • 10a Arnold RT. Fuson RC. J. Am. Chem. Soc.  1936,  58:  1275 
  • 10b Fuson RC. Gray H. Gouza JJ. J. Am. Chem. Soc.  1939,  61:  1937 
  • 10c Fuson RC. Emerson WS. Weinstock HH. J. Am. Chem. Soc.  1939,  61:  412 
  • 11a Ando T. J. Chem. Soc. Jpn.  1935,  56:  745 ; Chem. Abstr. 1935, 29, 7960
  • 11b Riebsomer JL. Irvine J. Andrews R. J. Am. Chem. Soc.  1938,  60:  1015 
  • 11c Riebsomer JL. Baldwin R. Buchanan J. Burkett H. J. Am. Chem. Soc.  1938,  60:  2974 
  • 11d Riebsomer JL. Stauffer D. Glick F. Lambert F. J. Am. Chem. Soc.  1942,  64:  2080 
  • 11e Riebsomer JL. Irvine J. Org. Synth. Coll. Vol. 3   Wiley; New York: 1955.  p.326 
  • 11f Ghosh S. Pardo SN. Salomon RG. J. Org. Chem.  1982,  47:  4692 
  • 12 Patai S. Dayagi S. J. Chem. Soc.  1958,  3058 
  • 13 Mine N. Fujiwara Y. Taniguchi H. Chem. Lett.  1986,  357 
  • 14 Zhang W. Shi M. Chem. Commun.  2006,  1218 
  • 15 Kindler M. K. Chem. Ber.  1943,  76:  308 
  • 16 Monenschein H. Dräger G. Jung A. Kirschning A. Chem. Eur. J.  1999,  5:  2270 
  • 17 Barthel G. J. Org. Chem.  1958,  23:  135 
  • 18 Fuson R. C. Emerson W. S. Gray H. W. J. Am. Chem. Soc.  1939,  61:  480 
  • 19 Tang L. Deng L. J. Am. Chem. Soc.  2002,  124:  2870 
  • 20 Gerlach U. Haubenreich T. Hünig S. Chem. Ber.  1994,  127:  1969 
  • 21 Pham V. C. Jossang A. Sevenet T. Nguyen V. H. Bodo B. Tetrahedron  2007,  63:  11244