Subscribe to RSS
DOI: 10.1055/a-2801-7481
Catalytic 1,2-Elimination: A Novel Asymmetric Approach
Authors

Abstract
Elimination reactions have unexpectedly emerged as a novel tool in asymmetric synthesis, offering unique and advantageous approaches for accessing diverse chiral structures. Recent advances in catalytic asymmetric 1,2-elimination reactions leading to carbon–carbon double bonds have been summarized and systematically discussed in three sections, according to distinct synthetic strategies such as desymmetrization to centrally chiral compounds, kinetic resolution of β-substituted carbonyl compounds, and β-elimination to axially chiral compounds. This brief review aims to highlight the significance and sophistication of these three specialized asymmetric elimination pathways in the innovative construction of chiral molecules, while also encouraging the continued growth of this emerging field.
Publication History
Received: 05 January 2026
Accepted after revision: 30 January 2026
Accepted Manuscript online:
30 January 2026
Article published online:
13 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 3rd ed. New York: Wiley; 1985
- 1b Carey FA. Organic Chemistry. 5th ed. New York: McGraw-Hill; 2003
- 2a Urban M, Vesely J. Chem Eur J 2025; 31: e02172
- 2b Liu H, Tang K, Zeng H, Chen L, Liang H, Jia Y. Chem Soc Rev 2025; 54: 6208
- 2c Moon J, Kim S, Lee S. et al. ChemCatChem 2024; 16: e202400690
- 2d Yang P-J, Chai Z. Org Biomol Chem 2023; 21: 465
- 2e Najera C, Foubelo F, Sansano JM, Yus M. Tetrahedron 2022; 106–107: 132629
- 3a Deng M, Yu J, Blackmond DG. Acc Chem Res 2024; 57: 2234
- 3b Harwood LA, Wong LL, Roberton J. Angew Chem Int Ed 2021; 60: 4434
- 3c Davies SG, Fletcher AM, Roberts PM, Thomson JE. Org Biomol Chem 2021; 19: 2847
- 3d Tak R, Kumar M, Menapara T. et al. Adv Synth Catal 2017; 359: 3990
- 3e Borowiecki P, Dranka M, Ochal Z. Eur J Org Chem 2017; 5378
- 3f Kreituss I, Bode JW. Acc Chem Res 2016; 49: 2807
- 4a Liu GZ, Nie X, Li L. Synthesis 2025; 57: 3449
- 4b Liu X-X, Hu Z-R, Duan M-F, Cheng D-J. Adv Synth Catal 2025; 367: e202401553
- 4c Zhang H-H, Li T-Z, Liu S-J, Shi F. Angew Chem Int Ed 2024; 63: e20231105
- 4d Wu S, Xiang S-H, Cheng JK, Tan B. Tetrahedron Chem 2022; 1: 100009
- 4e Cheng JK, Xiang S-H, Li S, Ye L, Tan B. Chem Rev 2021; 121: 4805
- 4f Kumarasamy E, Raghunathan R, Sibi MP, Sivaguru J. Chem Rev 2015; 115: 11239
- 5 Kashihara H, Suemune H, Kawahara T, Sakai K. J Chem Soc Perkin Trans 1 1990; 1663
- 6 Hayashi T, Kishi K, Uozumi Y. Tetrahedron Asymmetry 1991; 2: 195
- 7 Sun S, Sun S, Zi W. Nat Commun 2025; 16: 2227
- 8 Tsai Y-H, Chen Y-H, Sun T-W, Chen S-W, Wu H-L, Hayashi T. ACS Catal 2024; 14: 9505
- 9 Matt C, Orthaber A, Streuff J. Angew Chem Int Ed 2022; 61: e202114044
- 10a Shin E, Kim HJ, Kim Y, Kim Y, Park YS. Tetrahedron Lett 2006; 47: 1933
- 10b Kim Y, Choi ET, Lee MH, Park YS. Tetrahedron Lett 2007; 48: 2833
- 11 Choi ET, Lee MH, Kim Y, Park YS. Tetrahedron 2008; 64: 1515
- 12 Lee MH, Choi ET, Kim D, Lee YM, Park YS. Eur J Org Chem 2008; 5630
- 13 Du Z-X, Zhang L-Y, Fan X-Y, Wu F-C, Da C-S. Tetrahedron Lett 2013; 54: 2828
- 14 Li L, Liu Y, Peng Y, Yu L, Wu X, Yan H. Angew Chem Int Ed 2016; 55: 331
- 15 Tan Y, Luo S, Li D. et al. J Am Chem Soc 2017; 139: 6431
- 16 Paladhi S, Hwang I-S, Yoo E-J, Ryu DH, Song CE. Org Lett 2003; 2018: 20
- 17 Kuehnel MF, Schloder T, Riedel S. et al. Angew Chem Int Ed 2012; 51: 2218
- 18 Crouch IT, Neff RK, Frantz DE. J Am Chem Soc 2013; 135: 4970
- 19 Zhu C, Chu H, Li G, Ma S, Zhang J. J Am Chem Soc 2019; 141: 19246
- 20 Han J, Liu S, Wang H. et al. Sci Adv 2023; 9: eadg1002
- 21 O’Connor TJ, Mai BK, Nafie J, Liu P, Toste FD. J Am Chem Soc 2021; 143: 13759
- 22 Ng JS, Hayashi T. Angew Chem Int Ed 2021; 60: 20771
- 23 He S-J, Shen B, Zuo L-Z. et al. J Am Chem Soc 2024; 146: 19137