Subscribe to RSS
DOI: 10.1055/a-2790-7083
Electrochemical Entry to Alkynylphosphonates via Copper Redox Catalysis Enabled C–P Coupling
Authors
Dr. M. K. acknowledge the Council of Scientific & Industrial Research (CSIR) for financial support through the project CSIR-IHP002403. Dr. C. P. is thankful to Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) for providing the visitor grant (2023/13512-1).

Dedication
Dedicated with friendship to Prof. Giuliano C. Clososki on the occasion of his birthday.
Abstract
In this letter, we report the Csp–P coupling between terminal acetylenes and dialkylphosphites under electroredox copper catalysis to prepare alkynylphosphonates. The reaction works via electrochemical generation of cuprous acetylide, a requisite intermediate for oxidative addition/reductive elimination steps to deliver the product. Few intrinsic features of this chemistry are good synthetic yields, applicability to electron-rich/-poor alkynes together with the use of a base additive in controlling the product selectivity. Deuterium replacement experiments suggest that the yield variation is pronounced in phosphites than alkynes. Assessing the reactivity of electronically distinct alkynes via competitive reactions revealed that the product ratio is somewhat more favored in electron-rich alkynes.
Keywords
Electroredox chemistry - Cuprous catalysis - Csp–P coupling - Alkynylphosphonates - Product selectivityPublication History
Received: 14 November 2025
Accepted after revision: 16 January 2026
Article published online:
11 February 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Cavallaro V, Moglie YF, Murray AP, Radivoy GE. Bioorg Chem 2018; 77: 420
- 1b Jiang W, Allan G, Chen X. et al. Steroids 2006; 71: 949
- 1c Krishna H, Caruthers MH. J Am Chem Soc 2012; 134: 11618
- 1d Salomón DG, Grioli SM, Buschiazzo M. et al. ACS Med Chem Lett 2011; 2: 503
- 2a Tahir S, Wunsch JF, Rudolph M, Rominger F, Hashmi ASK. Org Chem Front 2022; 9: 117
- 2b Petko D, Pounder A, Tam W. Synthesis 2019; 51: 4271
- 2c Mitrofanov AY, Bychkova VA, Nefedov SE, Beletskaya IP. J Org Chem 2020; 85: 14507
- 2d Mitrofanov AY, Beletskaya IP. J Org Chem 2023; 88: 2367
- 2e Xin T, Cummins CC. ACS Cent Sci 2023; 9: 1575
- 2f Wang Z, Yu Z, Wang Y, Shi D. Synthesis 2012; 44: 1559
- 2g Lecerclé D, Sawicki M, Taran F. Org Lett 2006; 8: 4283
- 3 Iorga B, Eymery F, Carmichael D, Savignac P. Eur J Org Chem 2000; 3103 and references cited therein
- 4a Lera M, Hayes CJ. Org Lett 2000; 2: 3873
- 4b Wang Y, Gan J, Liu L. et al. J Org Chem 2014; 79: 3678
- 4c Yatsumonji Y, Ogata A, Tsubouchi A, Takeda T. Tetrahedron Lett 2008; 49: 2265
- 4d Li X, Sun S, Yang F, Kang J, Wu Y, Wu Y. Org Biomol Chem 2015; 13: 2432
- 4e Lecerclé D, Mothes C, Taran F. Synth Commun 2007; 37: 1301
- 5 Yang J, Chen T, Zhou Y, Yin S, Han L-B. Chem Commun 2015; 51: 3549
- 6a Gao Y, Wang G, Chen L. et al. J Am Chem Soc 2009; 131: 7956
- 6b Jouvin K, Heimburger J, Evano G. Chem Sci 2012; 3: 756
- 6c Moglie Y, Mascaró E, Guiterrez V, Alonso F, Radivoy G. J Org Chem 2016; 81: 1813
- 6d Theunissen C, Lecomte M, Jouvin K. et al. Synthesis 2014; 46: 1157
- 6e Kaboudin B, Amirkhiz EY, Sabzalipour A, Varmaghani F, Zhang T, Gu Y. Org Biomol Chem 2025; 23: 5798
- 6f Song W-Z, Li J-H, Li M. et al. Synth Commun 2019; 49: 697
- 6g Liu LL, Wu Y, Wang Z, Zhu J, Zhao Y. J Org Chem 2014; 79: 6816
- 7a Singh H, Sahoo T, Sen C, Galani SM, Ghosh SC. Cat Sci Technol 2019; 9: 1691
- 7b Yuan T, Chen F, Lu G-P. New J Chem 2018; 42: 13957
- 7c Xu S, Xiong B, Yuan M. et al. Adv Synth Catal 2025; 367: e202401414
- 7d Liu P, Yang J, Li P, Wang L. Appl Organomet Chem 2011; 25: 830
- 7e Jiang W, Wang J, Chen Y. et al. Dalton Trans 2022; 51: 12432
- 8a Sampath S, Vadivelu M, Raheem AA. et al. Ind Eng Chem Res 2022; 61: 9552
- 8b Sundaramoorthy R, Vadivelu M, Thirumoorthy K, Karthikeyan K, Praveen C. ChemMedChem 2023; 18: e202300008
- 8c Vadivelu M, Sampath S, Muthu K, Karthikeyan K, Praveen C. Adv Synth Catal 2021; 363: 4941
- 8d Vadivelu M, Sugirdha S, Dheenkumar P, Arun Y, Karthikeyan K, Praveen C. Green Chem 2017; 19: 3601
- 9a Krishnan M, Kathiresan M, Praveen C. Eur J Org Chem 2023; 26: e202201405
- 9b Krishnan M, Kathiresan M, Praveen C. Synthesis 2024; 56: 777
- 10 General experimental procedure: In a single-cell electrochemical setup were added n Bu4BF4 (0.01 M), Cu(NO3)2·3H2O (10 mol%), 2,2′ bipyridine (10 mol%), TMEDA (10 mol%), alkyne (1.0 mmol) and dialkylphosphite (1.0 mmol) in DMSO. Constant potential electrolysis was performed using a three-electrode system (Ag/AgCl, graphite bar, and platinum) at an overpotential of −0.25 V. The mixture was magnetically stirred at room temperature for 2 h. Upon completion of the reaction as indicated by TLC (1:2 EtOAc:Cy), the resulting mixture was diluted with water and extracted with EtOAc. The organic phase was dried over anhydrous Na2SO4 followed by evaporation under reduced pressure to remove the solvent. The product was purified by column chromatography over silica gel using cyclohexane as an eluent to obtain the desired product.
- 11a Chen T, Zhao C-Q, Han L-B. J Am Chem Soc 2018; 140: 3139
- 11b Wang P, You P-P, Xu W, Zhu L, Xiong B. J Organomet Chem 2025; 1039: 123789
- 12 Ghasemzadeh MS, Akhlaghinia B. New J Chem 2019; 43: 5341
- 13 The anodic process at the Pt counter electrode is expected to be the oxidation of water to dioxygen. Although the electrolysis is carried out in dry DMSO, the use of Cu(NO3)2·3H2O introduces sufficient bound water to enable water oxidation at the anode as counter reaction. The anodic oxidation of water balances the cathodic reduction of Cu2+ to Cu+ occurring at the graphite working electrode.
- 14 Guissart C, Luhmer M, Evano G. Tetrahedron 2018; 74: 6727