Synthesis
DOI: 10.1055/a-2788-9051
Paper

Controlled Conversion of C3-Ketoxime Triterpenoids to A-Lactam or A-seco-Nitrile Scaffolds

Authors

  • Catherine Bergeron

    1   Faculty of Pharmacy, Université Laval, Québec, Canada (Ringgold ID: RIN4440)
    2   Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
    3   Centre de recherche en infectiologie, Université Laval, Québec, Canada
  • Christopher Bérubé

    1   Faculty of Pharmacy, Université Laval, Québec, Canada (Ringgold ID: RIN4440)
    2   Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
    3   Centre de recherche en infectiologie, Université Laval, Québec, Canada
  • Maxime Del Mistro

    1   Faculty of Pharmacy, Université Laval, Québec, Canada (Ringgold ID: RIN4440)
    2   Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
    3   Centre de recherche en infectiologie, Université Laval, Québec, Canada
  • Simon Côté

    4   Research and Development, Matrix Innovation Inc., Québec, Canada
  • Dave Richard

    2   Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
    3   Centre de recherche en infectiologie, Université Laval, Québec, Canada
    5   Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, Canada (Ringgold ID: RIN4440)
  • Eric Biron

    1   Faculty of Pharmacy, Université Laval, Québec, Canada (Ringgold ID: RIN4440)
    2   Centre de recherche du CHU de Québec-Université Laval, Québec, Canada
    3   Centre de recherche en infectiologie, Université Laval, Québec, Canada

Natural Sciences and Engineering Research Council of Canada (NSERC) # ALLRP 567473-21


Graphical Abstract

Abstract

In this work, we report the investigation of several Beckmann rearrangement conditions to selectively produce seven-membered A-lactam and A-seco-nitrile derivatives from triterpenoids. Using C3-oxime–C28-acetate betulin as a model substrate, the presence of zinc chloride in the reaction gave the best yields of either the amide or the ring-opened nitrile products, but the preference between the Beckmann rearrangement versus fragmentation was dictated by the solvent used. The scope of the reaction was extended to other triterpenoids such as lupeol, betulinic acid, and oleanolic acid. Convenient and safe, the reported method was performed on scales up to 20 g, employs cost-effective reagents, and allows the rapid generation of attractive triterpenoid scaffolds and potentially bioactive molecules.



Publication History

Received: 14 November 2025

Accepted after revision: 14 January 2026

Accepted Manuscript online:
14 January 2026

Article published online:
26 January 2026

© 2026. Thieme. All rights reserved.

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 1 Amiri S, Dastghaib S, Ahmadi M. et al. Biotechnol Adv 2020; 38: 39
  • 2 Krasutsky PA. Nat Prod Rep 2006; 23: 919-942
  • 3 Liu WJ, Li QS, Hu JH, Wang HX, Xu FB, Bian Q. Bioorg Med Chem 2019; 27: 8-15
  • 4 Baas WJ. Phytochem 1985; 24: 1875-1889
  • 5 Chen IH, Du Y-C, Lu M-C. et al. J Nat Prod 2008; 71: 1352-1357
  • 6 Shernyukov AV, Salakhutdinov NF, Tolstikov GA. Russ Chem Bull 2013; 62: 878-895
  • 7 Kazakova OB, Medvedeva NI, Tolstikov GA. et al. Mendeleev Commun 2010; 20: 234-236
  • 8 Deng Y, Snyder JK. J Org Chem 2002; 67: 2864-2873
  • 9 Roy K, Roy R, Raj K, Bhaduri AP. Indian J Chem 1998; 37: 865-867
  • 10 Petrova AV, Kazakova OB, Nazarov IS, Csuk R, Heise NV. Chem Biodivers 2023; 20
  • 11 Wei Y, Ma C-M, Hattori M. Eur J Med Chem 2009; 44: 4112-4120
  • 12 Tolmacheva IA, Igosheva EV, Savinova OV, Boreko EI, Grishko VV. Chem Nat Compd 2014; 49: 1050-1058
  • 13 Romero-Estrada A, Boto A, González-Christen J. et al. J Nat Prod 2022; 85: 787-803
  • 14 He X-F, Wang X-N, Yin S, Dong L, Yue J-M. Bioorg Med Chem Lett 2011; 21: 125-129
  • 15 Kuczynska K, Bonczak B, Rarova L. et al. J Mol Struct 2022; 1250
  • 16 Huang R, Zhao Y, Wang Y, Zhou L, Chen YF, Wang JF. J Asian Nat Prod Res 2018; 20: 860-866
  • 17 Urban M, Sarek J, Klinot J, Korinkova G, Hajduch M. J Nat Prod 2004; 67: 1100-1105
  • 18 Kumar S, Misra N, Raj K, Srivastava K, Puri SK. Nat Prod Res 2008; 22: 305-319
  • 19 Kazakova OB, Lopatina TV, Baikova IP, Zileeva ZR, Vakhitova YV, Suponitsky KY. Med Chem Res 2020; 29: 1507-1519
  • 20 Haavikko R, Nasereddin A, Sacerdoti-Sierra N. et al. Med Chem Commun 2014; 5: 445-451
  • 21 Hase T. Acta Chem Scand 1970; 24: 364-365
  • 22 Bednarczyk-Cwynar B, Zaprutko L, Froelich AJ. Mol Stuct 2013; 1053: 115-121
  • 23 Sundararamaiah T, Ramraj SK, Rao KL, Bai VV. J Indian Chem Soc 1976; 53: 664
  • 24 Lopatina TV, Medvedeva NI, Baikova IP, Iskhakov AS, Kazakova OB. Russ J Bioorg Chem 2019; 45: 292-301
  • 25 Mazumdar W, Driver TG. Synthesis 2021; 53: 1734-1748
  • 26 Smith M. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. 7th ed. Hoboken, New Jersey: Wiley; 2013
  • 27 Surendra K, Corey EJ. J Am Chem Soc 2009; 131: 13928-13929
  • 28 Dehaen W, Mashentseva AA, Seitembetov TS. Molecules 2011; 16: 2443-2466
  • 29 Kazakova O, Petrova A, Terekhova A, Vakhitova Y, Polovyanenko D, Bagryanskaya I. ChemistrySelect 2024; 9: e202402593
  • 30 Ulici A, Milan A, Mioc M, Ghiulai R, Racoviceanu R, Șoica C. Timiș Med J 2021; 2020: 1
  • 31 Kazakova O, Racoviceanu R, Petrova A. et al. Int J Mol Sci 2021; 22: 12542
  • 32 Hordyjewska A, Ostapiuk A, Horecka A, Kurzepa J. Phytochem Rev 2019; 18: 929-951
  • 33 Augustine JK, Kumar R, Bombrun A, Mandal AB. Tetrahedron Lett 2011; 52: 1074-1077
  • 34 Xiao L-F, Xia C-G, Chen J. Tetrahedron Lett 2007; 48: 7218-7221
  • 35 Li J-T, Meng X-T, Yin Y. Synth Commun 2010; 40: 1445-1452
  • 36 Wiemann J, Heller L, Perl V, Kluge R, Ströhl D, Csuk R. Eur J Med Chem 2015; 106: 194-210
  • 37 Gauthier C, Legault J, Lebrun M, Dufour P, Pichette A. Bioorg Med Chem 2006; 14: 6713-6725
  • 38 Sun F, Zhu P, Yao H, Wu X, Xu J. J Chem Res 2012; 36: 254-257
  • 39 Zhu C, Tang P, Yu B. J Am Chem Soc 2008; 130: 5872-5873
  • 40 Carman RM, Cowley DE. Tetrahedron Lett 1964; 5: 627-629