Subscribe to RSS
DOI: 10.1055/a-2779-1148
Asymmetric Synthesis of the 9-Azabicyclo[3.3.1]nonane Core of Macroline-Type Alkaloids
Authors
Supported by: National Institutes of Health
Funding Information We thank the National Institutes of Health for funding of our research program in this field. Work performed in the University of Pittsburgh X-ray Crystallography Facility (RRID:SCR_025125) and services and instruments used in this project were graciously supported, in part, by the University of Pittsburgh.

Dedication
Dedicated to Dr. Dani Schultz, the recipient of the 2025 Women in Chemistry Award.
Abstract
The signature indole-fused 9-azabicyclo[3.3.1]nonane (9-ABN) core of macroline-type alkaloids in its natural configuration has been accessed in 4 steps and 16% overall yield from 1H-indole and an l-menthyl nicotinate-derived pyridyl alcohol. The two starting fragments were condensed using a hydrogen auto-transfer (HA) strategy. The key stereocenter at C-5 was installed in up to 95:5 dr with a double diastereoselective, chiral auxiliary-assisted asymmetric transfer hydrogenation (CAATHy). This selective partial reduction of the pyridine to the tetrahydropyridine set the stage for stereospecific formation of the bridged, bicyclic 9-ABN system via a novel superacid-mediated cycloisomerization reaction. Starting from indole and 6-(hydroxymethyl)nicotinate esters, this new strategy provides rapid, protecting group- and transition metal-free access to the tetracyclic macroline core.
Keywords
Macroline - Alkaloids - 9-Azabicyclo[3.3.1]nonane - Hydrogen auto-transfer - Asymmetric transfer hydrogenation - Partial pyridine reductionPublication History
Received: 19 October 2025
Accepted after revision: 24 December 2025
Accepted Manuscript online:
25 December 2025
Article published online:
15 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Khyade MS, Kasote DM, Vaikos NP. J Ethnopharmacol 2014; 153: 1
- 2a Rahman MT, Tiruveedhula V, Cook JM. Molecules 2016; 21: 1525
- 2b Namjoshi OA, Cook JM. The Alkaloids: Chemistry and Biology. Vol. 76. Elsevier; 2016: 63-172
- 3 Wright CW, Allen D, Cai Y. et al. Phytother Res 1992; 6: 121
- 4a D’Imperio S, Monasky MM, Micaglio E, Ciconte G, Anastasia L, Pappone C. Front Cardiovasc Med 2021; 8: 771349
- 4b Pan L, Terrazas C, Acuña UM. et al. Phytochem Lett 2014; 10: 54
- 4c Tan S-J, Lim J-L, Low Y-Y, Sim K-S, Lim S-H, Kam T-S. J Nat Prod 2014; 77: 2068
- 4d Kam T-S, Choo Y-M, Komiyama K. Tetrahedron 2004; 60: 3957
- 4e Pandey KP, Rahman MT, Cook JM. Molecules 2021; 26: 3459
- 4f Bi Y, Cook JM, LeQuesne PW. Tetrahedron Lett 1994; 35: 3877
- 4g Rich SM, Leendertz FH, Xu G. et al. Proc Natl Acad Sci USA 2009; 106: 14902
- 5 Calvert BJ, Hobson JD. J Chem Soc 1964; 5378
- 6 O’Connor SE, Maresh JJ. Nat Prod Rep 2006; 23: 532
- 7 Esmond RW, Le Quesne PW. J Am Chem Soc 1980; 102: 7116
- 8 Dang T-TT, Franke J, Carqueijeiro IS, Langley C, Courdavault V, O’Connor SE. Nat Chem Biol 2018; 14: 760
- 9 Le Men L, Taylor WI. Experientia 1965; 21: 508
- 11a Tasker NR. Photoflow Preparation of PTP4A3 Inhibitors and Concise Total Syntheses of Ergot and Clavine Alkaloids. Ph.D Dissertation, Pittsburgh, PA: University of Pittsburgh; 2023
- 11b In preliminary studies, 4 was obtained in up to 78:22 er under ATH conditions with (S)-CPA 2 catalyst.11a
- 12 Kutney JP, Eigendorf GK, Matsue H. et al. J Am Chem Soc 1978; 100: 938
- 13a Li J, Wang T, Yu P. et al. J Am Chem Soc 1999; 121: 6998
- 13b Zhang L-H, Cook JM. Heterocycles 1988; 27: 1357
- 14 Deiters A, Chen K, Eary CT, Martin SF. J Am Chem Soc 2003; 125: 4541
- 15 Miller KA, Martin SF. Org Lett 2007; 9: 1113
- 16a Yang Z, Tan Q, Jiang Y. et al. Angew Chem Int Ed 2021; 60: 13105
- 16b Qiu H, Fei X, Yang J. et al. Nat Commun 2023; 14: 5560
- 16c See also: Tan Q, Yang Z, Jiang D. et al. Angew Chem Int Ed 2019; 58: 6420
- 17a Wurz RP, Fu GC. J Am Chem Soc 2005; 127: 12234
- 17b For racemic synthesis see: Tran YS, Kwon O. Org Lett 2005; 7: 4289
- 17c For enantioselective synthesis of the unnatural 9-ABN scaffold see: Aoyama H, Davies C, Liu J. et al. Chem Eur J 2023; 30: e202303027
- 18 Kadam VD, Rao B, Mahesh SK. et al. Org Lett 2018; 20: 4782
- 19a Chen W, Ma Y, He W. et al. Nat Commun 2022; 13: 908
- 19b Wei K, Hu W, Sun Y, Zhu T, Chen W, Zhang H. Synthesis 2023; 55: 2648
- 20 Krüger S, Gaich T. Angew Chem Int Ed 2015; 54: 315
- 21 Cheng WF, Ma S, Lai YT. et al. Angew Chem Int Ed 2023; 62: e202311671
- 22 Bohn A, Cipriano BM, Wipf P. Trends Chem 2025; 7: 650-658
- 23a Masamune S, Choy W, Petersen JS, Sita LR. Angew Chem Int Ed Engl 1985; 24: 1
- 23b Huang L, Zhang Y, Staples RJ, Huang RH, Wulff WD. Chem Eur J 2012; 18: 5302
- 24 Pazur EJ, Tasker NR, Wipf P. Org Biomol Chem 2023; 21: 8651
- 25 Whitesell JK. Chem Rev 1992; 92: 953
- 26 Oertling H, Reckziegel A, Surburg H, Bertram H-J. Chem Rev 2007; 107: 2136
- 27a Whitesell JK, Chen H-H, Lawrence RM. J Org Chem 1985; 50: 4663
- 27b Schwartz A, Madan P, Whitesell JK, Lawrence RM. Org Synth 1990; 69: 1
- 28a Laumen K, Breitgoff D, Seemayer R, Schneider MP. J Chem Soc Chem Commun 1989; 148
- 28b Basavaiah D, Krishna PR. Tetrahedron 1995; 51: 12169
- 29 Faisca Phillips AM, Pombeiro AJL. Catalysts 2023; 13: 419
- 30 Rueping M, Antonchick AP. Angew Chem Int Ed 2007; 46: 4562
- 31a Boekelheide V, Linn WJ. J Am Chem Soc 1954; 76: 1286
- 31b Fontenas C, Bejan E, Haddou HA, Balavoine GG. Synth Commun 1995; 25: 629
- 32 Nicke L, Horx P, Harms K, Geyer A. Chem Sci 2019; 10: 8634
- 33a Kazancioglu MZ, Quirion K, Wipf P, Skoda EM. Chirality 2022; 34: 521
- 33b For the preparation of a variety of substituted binaphthol catalysts, see: Wipf P, Jung J-K. J Org Chem 2000; 65: 6319
- 34 Xu F, Huang D, Han C, Shen W, Lin X, Wang Y. J Org Chem 2010; 75: 8677
- 35a For related computational analyses, see: Reid JP, Goodman JM. J Am Chem Soc 2016; 138: 7910
- 35b Reid JP, Simón L, Goodman JM. Acc Chem Res 2016; 49: 1029
- 35c Reid JP, Goodman JM. Chem Eur J 2017; 23: 14248
- 36 Geng Y, Takatani T, Hohenstein EG, Sherrill CD. J Phys Chem A 2010; 114: 3576
- 37a Eisenbeis SA, Phillips JR, Rescek D, Oyola-Cintron Y. Tetrahedron Lett 2010; 51: 4303
- 37b Plancher G. Gazz Chim Ital 1898; 28: 374
- 38 Qin T, Gao X, Lei L. et al. Eur J Med Chem 2023; 252: 115307
- 39 For prior characterization, see: Li X, Zhao Z-B, Chen M-W. et al. Chem Commun 2020; 56: 5815
- 40a For protocol, see Supporting Information: Billings SB, Woerpel KA. J Org Chem 2006; 71: 5171
- 40b For prior characterization, see: Hackbusch S, Franz AH. ARKIVOC 2015; viii: 172
- 41 Wright AC, Du YE, Stoltz BM. J Org Chem 2019; 84: 11258